hberp/hb_server/apps/hrm/services.py

104 lines
3.9 KiB
Python

from django.conf import settings
import uuid
import face_recognition
import os
from apps.hrm.models import Employee
from apps.hrm.tasks import update_all_user_facedata_cache
from apps.system.models import User
from django.core.cache import cache
class HRMService:
@classmethod
def face_compare_from_path(cls, path, tolerance=0.42):
filepath = settings.BASE_DIR +path
try:
unknown_picture = face_recognition.load_image_file(filepath)
unknown_face_encoding = face_recognition.face_encodings(unknown_picture, num_jitters=2)[0]
# os.remove(filepath)
except:
# os.remove(filepath)
return None, '识别失败,请调整位置'
# 匹配人脸库
face_datas = cache.get('face_datas')
if face_datas is None:
update_all_user_facedata_cache()
face_datas = cache.get('face_datas')
face_users = cache.get('face_users')
results = face_recognition.compare_faces(face_datas,
unknown_face_encoding, tolerance=tolerance)
user_index = cls.get_user_index(results)
user_index_len = len(user_index)
if user_index_len == 1:
user = User.objects.get(id=face_users[user_index[0]])
return user, ''
elif user_index_len == 0:
return None, '人脸未匹配,请调整位置'
else:
user_ids = []
for i in user_index:
user_ids.append(face_users[i])
user_name_str = ','.join(list(User.objects.filter(id__in=user_ids).values_list('name', flat=True)))
return None, '匹配多张人脸:' + user_name_str
@classmethod
def face_compare_from_base64(cls, base64_data, tolerance=0.42):
filename = str(uuid.uuid4())
filepath = settings.BASE_DIR +'/temp/' + filename +'.png'
with open(filepath, 'wb') as f:
f.write(base64_data)
try:
unknown_picture = face_recognition.load_image_file(filepath)
unknown_face_encoding = face_recognition.face_encodings(unknown_picture, num_jitters=2)[0]
os.remove(filepath)
except:
os.remove(filepath)
return None, '识别失败,请调整位置'
# 匹配人脸库
face_datas = cache.get('face_datas')
if face_datas is None:
update_all_user_facedata_cache()
face_datas = cache.get('face_datas')
face_users = cache.get('face_users')
results = face_recognition.compare_faces(face_datas,
unknown_face_encoding, tolerance=tolerance)
user_index = cls.get_user_index(results)
user_index_len = len(user_index)
if user_index_len == 1:
user = User.objects.get(id=face_users[user_index[0]])
return user, ''
elif user_index_len == 0:
return None, '人脸未匹配,请调整位置'
else:
user_ids = []
for i in user_index:
user_ids.append(face_users[i])
user_name_str = ','.join(list(User.objects.filter(id__in=user_ids).values_list('name', flat=True)))
return None, '匹配多张人脸:' + user_name_str
@classmethod
def get_user_index(cls, results):
"""
返回user_index列表
"""
true_num = 0
user_index = []
for index, value in enumerate(results):
if value:
true_num = true_num + 1
user_index.append(index)
return user_index
@classmethod
def get_facedata_from_img(cls, img_path):
try:
photo_path = settings.BASE_DIR + img_path
picture_of_me = face_recognition.load_image_file(photo_path)
my_face_encoding = face_recognition.face_encodings(picture_of_me, num_jitters=2)[0]
face_data_list = my_face_encoding.tolist()
return face_data_list, ''
except:
return None, '人脸数据获取失败请重新上传图片'