punchtheclock
After Width: | Height: | Size: 6.2 KiB |
|
@ -0,0 +1,3 @@
|
|||
{
|
||||
"directory": "../"
|
||||
}
|
|
@ -0,0 +1,14 @@
|
|||
# editorconfig.org
|
||||
root = true
|
||||
|
||||
[*]
|
||||
indent_style = tab
|
||||
end_of_line = lf
|
||||
charset = utf-8
|
||||
trim_trailing_whitespace = true
|
||||
insert_final_newline = true
|
||||
indent_style = space
|
||||
indent_size = 2
|
||||
|
||||
[*.md]
|
||||
trim_trailing_whitespace = false
|
|
@ -0,0 +1,3 @@
|
|||
.DS_Store
|
||||
node_modules
|
||||
test/assets/benchmark.json
|
|
@ -0,0 +1,30 @@
|
|||
{
|
||||
"asi": false,
|
||||
"bitwise": false,
|
||||
"curly": true,
|
||||
"eqeqeq": true,
|
||||
"esnext": true,
|
||||
"evil": false,
|
||||
"forin": false,
|
||||
"globals": {
|
||||
"document": true,
|
||||
"navigator": true,
|
||||
"tracking": true,
|
||||
"window": true
|
||||
},
|
||||
"immed": true,
|
||||
"indent": 2,
|
||||
"lastsemic": false,
|
||||
"maxdepth": false,
|
||||
"multistr": false,
|
||||
"newcap": true,
|
||||
"noarg": true,
|
||||
"node": true,
|
||||
"onevar": false,
|
||||
"quotmark": "single",
|
||||
"regexp": true,
|
||||
"smarttabs": true,
|
||||
"trailing": true,
|
||||
"undef": true,
|
||||
"unused": true
|
||||
}
|
|
@ -0,0 +1,4 @@
|
|||
language: node_js
|
||||
node_js:
|
||||
- "0.11"
|
||||
- "0.10"
|
|
@ -0,0 +1,30 @@
|
|||
Software License Agreement (BSD License)
|
||||
|
||||
Copyright (c) 2014, Eduardo A. Lundgren Melo.
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use of this software in source and binary forms, with or without modification, are
|
||||
permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above
|
||||
copyright notice, this list of conditions and the
|
||||
following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the
|
||||
following disclaimer in the documentation and/or other
|
||||
materials provided with the distribution.
|
||||
|
||||
* The name of Eduardo A. Lundgren Melo may not be used to endorse or promote products
|
||||
derived from this software without specific prior
|
||||
written permission of Eduardo A. Lundgren Melo.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED
|
||||
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
|
||||
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||||
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
||||
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
|
||||
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
|
@ -0,0 +1,100 @@
|
|||

|
||||
|
||||
<div align=center>
|
||||
|
||||
:point_right: **https://github.com/eduardolundgren/tracking.js/issues/395** :point_left:
|
||||
|
||||
</div>
|
||||
|
||||
---
|
||||
|
||||
# tracking.js
|
||||
|
||||
[](https://travis-ci.org/eduardolundgren/tracking.js)
|
||||
[](https://david-dm.org/eduardolundgren/tracking.js#info=devDependencies)
|
||||
|
||||
The tracking.js library brings different computer vision algorithms and techniques into the browser environment. By using modern HTML5 specifications, we enable you to do real-time color tracking, face detection and much more — all that with a lightweight core (~7 KB) and intuitive interface.
|
||||
|
||||
* [Official website](http://trackingjs.com)
|
||||
* [Documentation](http://trackingjs.com/docs.html)
|
||||
* [API Docs](http://trackingjs.com/api/)
|
||||
|
||||
## Install
|
||||
|
||||
Install via [Bower](http://bower.io/), [npm](https://www.npmjs.com/), or [download as a zip](https://github.com/eduardolundgren/tracking.js/archive/master.zip):
|
||||
|
||||
```
|
||||
bower install tracking
|
||||
```
|
||||
|
||||
```
|
||||
npm install tracking
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
[](http://trackingjs.com/examples/face_tag_friends.html)
|
||||
[](http://trackingjs.com/examples/face_fish_tank.html)
|
||||
[](http://trackingjs.com/examples/color_hexgl.html)
|
||||
[](http://trackingjs.com/examples/color_draw_something.html)
|
||||
[](http://trackingjs.com/examples/color_fish_tank.html)
|
||||
|
||||
## Features
|
||||
|
||||
* [Trackers](http://trackingjs.com/docs.html#trackers)
|
||||
* [Color Tracker](http://trackingjs.com/docs.html#color-tracker)
|
||||
* [Object Tracker](http://trackingjs.com/docs.html#object-tracker)
|
||||
* [Utilities](http://trackingjs.com/docs.html#utilities)
|
||||
* [Feature Detection (Fast)](http://trackingjs.com/docs.html#feature-detection)
|
||||
* [Feature Descriptor (Brief)](http://trackingjs.com/docs.html#feature-descriptor)
|
||||
* [Convolution](http://trackingjs.com/docs.html#convolution)
|
||||
* [Gray Scale](http://trackingjs.com/docs.html#gray-scale)
|
||||
* [Image Blur](http://trackingjs.com/docs.html#image-blur)
|
||||
* [Integral Image](http://trackingjs.com/docs.html#integral-image)
|
||||
* [Sobel](http://trackingjs.com/docs.html#sobel)
|
||||
* [Viola Jones](http://trackingjs.com/docs.html#viola-jones)
|
||||
* [Web Components](http://trackingjs.com/docs.html#web-components)
|
||||
* [Color Element](http://trackingjs.com/docs.html#color-element)
|
||||
* [Object Element](http://trackingjs.com/docs.html#object-element)
|
||||
|
||||
## Browser Support
|
||||
|
||||
You can plug *tracking.js* into some well supported HTML elements such as `<canvas>`, `<video>` and `<img>`.
|
||||
|
||||
 |  |  |  | 
|
||||
--- | --- | --- | --- | --- |
|
||||
IE 9+ ✔ | Latest ✔ | Latest ✔ | Latest ✔ | Latest ✔ |
|
||||
|
||||
However, the browser support may vary if you request the user's camera (which relies on [getUserMedia API](http://caniuse.com/#feat=stream)).
|
||||
|
||||
## Roadmap
|
||||
|
||||
- [ ] Optical flow
|
||||
- [ ] Face recognition
|
||||
- [ ] Pose estimation
|
||||
- [ ] Faster keypoint descriptor (BRIEF)
|
||||
- [ ] More trainings (Hand, car plate, etc)
|
||||
|
||||
## Contributing
|
||||
|
||||
1. Fork it!
|
||||
2. Create your feature branch: `git checkout -b my-new-feature`
|
||||
3. Commit your changes: `git commit -m 'Add some feature'`
|
||||
4. Push to the branch: `git push origin my-new-feature`
|
||||
5. Submit a pull request :D
|
||||
|
||||
## History
|
||||
|
||||
For detailed changelog, check [Releases](https://github.com/eduardolundgren/tracking.js/releases).
|
||||
|
||||
## Team
|
||||
|
||||
*tracking.js* is maintained by these people and a bunch of awesome [contributors](https://github.com/eduardolundgren/tracking.js/graphs/contributors).
|
||||
|
||||
[](https://github.com/eduardolundgren) | [](https://github.com/thiago-rocha) | [](https://github.com/zenorocha) | [](https://github.com/pablocp) | [](https://github.com/mairatma) | [](https://github.com/jeromeetienne)
|
||||
--- | --- | --- | --- | --- | ---
|
||||
[Eduardo Lundgren](https://github.com/eduardolundgren) | [Thiago Rocha](https://github.com/thiago-rocha) | [Zeno Rocha](https://github.com/zenorocha) | [Pablo Carvalho](https://github.com/pablocp) | [Maira Bello](https://github.com/mairatma) | [Jerome Etienne](https://github.com/jeromeetienne)
|
||||
|
||||
## License
|
||||
|
||||
[BSD License](https://github.com/eduardolundgren/tracking.js/blob/master/LICENSE.md) © Eduardo Lundgren
|
|
@ -0,0 +1,37 @@
|
|||
### Face tracking
|
||||
- DONE display line with the face
|
||||
- impressive speed and accuracy from @clmtrackr - https://github.com/auduno/clmtrackr
|
||||
- http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html
|
||||
- dlib implementation
|
||||
- PerspectiveCamera.setViewOffset - todo the https://www.youtube.com/watch?v=LEPvUfC7wh8
|
||||
- support for webworker ?
|
||||
- it consume a lot of cpu
|
||||
- try blur in source image
|
||||
- get a video on the internet to use as example
|
||||
- DONE do lerp on output
|
||||
|
||||
---
|
||||
|
||||
### Misc
|
||||
- fix image source
|
||||
- handle a proper versioning
|
||||
- master is last stable
|
||||
- stable is tagged in github repo
|
||||
- dev is 'next-stable'
|
||||
|
||||
- Tracking.Image without destination buffer - force reallocation
|
||||
- allow to provide destination, if not present,
|
||||
- three.js is r67 in the examples - current three.js is r86
|
||||
- TODO port on current three.js
|
||||
- some examples are not running well - list which one
|
||||
- webcam one ?
|
||||
- some examples are unclear - no instructions
|
||||
- provide info in color tracking on how to run it
|
||||
- TODO list which one
|
||||
- add more interactive examples - stuff i can try with a webcam
|
||||
- merge lots of good PR
|
||||
- https://github.com/eduardolundgren/tracking.js/pull/229 - Add support for Safari 11
|
||||
- https://github.com/eduardolundgren/tracking.js/pull/144 Regressing Local Binary Features more details on face detection
|
||||
- https://github.com/eduardolundgren/tracking.js/pull/164 - Creating conversor from haarcascade to tracking.js array
|
||||
- https://github.com/eduardolundgren/tracking.js/pull/131 <- merge or close
|
||||
- ```gulp test``` fails in the benchmarks
|
|
@ -0,0 +1,101 @@
|
|||
<!DOCTYPE HTML>
|
||||
<html lang="en-US">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<title></title>
|
||||
|
||||
<script type="text/javascript" src="opencv_haarcascade_frontalface_alt.js"></script>
|
||||
<script type="text/javascript" src="opencv_haarcascade_eye.js"></script>
|
||||
<script type="text/javascript" src="opencv_haarcascade_upper_body.js"></script>
|
||||
<script type="text/javascript" src="opencv_haarcascade_mouth.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<script>
|
||||
// [
|
||||
// [
|
||||
// -1, // index
|
||||
// 0.8226894140243530, // stage threshold
|
||||
// // tree
|
||||
// [
|
||||
// // node 1
|
||||
// [
|
||||
// 3, 7, 14, 4, -1, // rect1
|
||||
// 3, 9, 14, 2, 2, // rect 2
|
||||
// 4.0141958743333817e-003, // node threshold
|
||||
// 0.0337941907346249, // left
|
||||
// 0.8378106951713562 // right
|
||||
// ],
|
||||
// // node 2
|
||||
// [
|
||||
// 3, 7, 14, 4, -1,
|
||||
// 3, 9, 14, 2, 2,
|
||||
// 4.0141958743333817e-003,
|
||||
// 0.0337941907346249,
|
||||
// 0.8378106951713562
|
||||
// ]
|
||||
// ]
|
||||
// ]
|
||||
// ];
|
||||
|
||||
var toFloat = function(v) {
|
||||
// return parseFloat(parseFloat(v).toFixed(1));
|
||||
return parseFloat(v);
|
||||
},
|
||||
|
||||
toInt = function(v) {
|
||||
return parseInt(v, 10);
|
||||
},
|
||||
|
||||
convert = function(haarcascade) {
|
||||
var stages = [],
|
||||
hstages = haarcascade.stages,
|
||||
i,
|
||||
j;
|
||||
|
||||
for (i = 0; i < hstages.length; i++) {
|
||||
var stage = [],
|
||||
trees = [],
|
||||
hstage = hstages[i],
|
||||
htrees = hstage.trees,
|
||||
parent = toInt(hstage.parent),
|
||||
stageThreshold = toFloat(hstage.stage_threshold);
|
||||
|
||||
for (j = 0; j < htrees.length; j++) {
|
||||
var node = [],
|
||||
hnode = htrees[j][0],
|
||||
hnodeThreshold = toFloat(hnode.threshold),
|
||||
hnodeLeft = toFloat(hnode.left_val),
|
||||
hnodeRight = toFloat(hnode.right_val),
|
||||
hnodeRects = hnode.feature.rects,
|
||||
hr,
|
||||
r;
|
||||
|
||||
for (r = 0; r < hnodeRects.length; r++) {
|
||||
hr = hnodeRects[r].split(" ").map(toFloat),
|
||||
node = node.concat(hr);
|
||||
}
|
||||
|
||||
node.push(hnodeThreshold, hnodeLeft, hnodeRight);
|
||||
trees.push(node);
|
||||
}
|
||||
|
||||
stage.push(parent, stageThreshold, trees);
|
||||
stages.push(stage);
|
||||
}
|
||||
|
||||
console.log(stages);
|
||||
|
||||
return JSON.stringify(stages);
|
||||
};
|
||||
|
||||
// output
|
||||
|
||||
// var json = convert(opencv_haarcascade_frontalface_alt);
|
||||
// var json = convert(opencv_haarcascade_eye);
|
||||
// var json = convert(opencv_haarcascade_upper_body);
|
||||
var json = convert(opencv_haarcascade_mouth);
|
||||
|
||||
console.log(json);
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1 @@
|
|||
<svg xmlns="http://www.w3.org/2000/svg" width="888px" height="443px" viewBox="0 0 888 443" version="1.1" style="baseline-shift: 0px; clip-rule: nonzero; color: rgb(0, 0, 0); color-interpolation: srgb; color-interpolation-filters: linearrgb; color-rendering: auto; cursor: auto; direction: ltr; fill: rgb(0, 0, 0); fill-opacity: 1; fill-rule: nonzero; font: 400 16px / 18.4px Nunito, sans-serif; image-rendering: auto; letter-spacing: normal; marker: none; overflow: hidden; paint-order: normal; pointer-events: auto; shape-rendering: auto; stroke: none; stroke-dasharray: none; stroke-dashoffset: 0px; stroke-linecap: butt; stroke-linejoin: miter; stroke-miterlimit: 4; stroke-opacity: 1; stroke-width: 1px; text-anchor: start; text-decoration: none solid rgb(0, 0, 0); text-rendering: auto; visibility: visible; word-spacing: 0px; writing-mode: horizontal-tb;" xmlns:xlink="http://www.w3.org/1999/xlink"><g id="github-banner" stroke="none" stroke-width="1" fill="none" fill-rule="evenodd" style="baseline-shift: 0px; fill: none; fill-rule: evenodd; paint-order: normal; text-decoration: none solid rgb(0, 0, 0);"><g id="gh-title" fill="#000000" style="baseline-shift: 0px; fill: rgb(0, 0, 0); paint-order: normal; text-decoration: none solid rgb(0, 0, 0);"><text id="name" font-family="Roboto-Bold, Roboto, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol" font-size="48" font-weight="bold" text-anchor="middle" style="baseline-shift: 0px; display: block; font-weight: 700; font-size: 48px; line-height: 55.2px; font-family: Roboto-Bold, Roboto, -apple-system, system-ui, "Segoe UI", Roboto, Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; paint-order: normal; text-anchor: middle; text-decoration: none solid rgb(0, 0, 0);"><tspan x="444" y="210" style="baseline-shift: 0px; paint-order: normal; text-decoration: none solid rgb(0, 0, 0);">Maintainers Wanted</tspan></text><text id="description" font-family="Roboto-Regular, Roboto, -apple-system, BlinkMacSystemFont, Segoe UI, Roboto, Helvetica, Arial, sans-serif, Apple Color Emoji, Segoe UI Emoji, Segoe UI Symbol" font-size="18" font-weight="normal" text-anchor="middle" style="baseline-shift: 0px; display: block; font-size: 18px; line-height: 20.7px; font-family: Roboto-Regular, Roboto, -apple-system, system-ui, "Segoe UI", Roboto, Helvetica, Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; paint-order: normal; text-anchor: middle; text-decoration: none solid rgb(0, 0, 0);"><tspan x="444" y="259" style="baseline-shift: 0px; paint-order: normal; text-decoration: none solid rgb(0, 0, 0);">We are looking for contributors to help with this project!</tspan></text></g></g></svg>
|
After Width: | Height: | Size: 2.8 KiB |
|
@ -0,0 +1,22 @@
|
|||
{
|
||||
"name": "tracking",
|
||||
"homepage": "http://trackingjs.com",
|
||||
"authors": [
|
||||
"Eduardo Lundgren <edu@rdo.io>"
|
||||
],
|
||||
"description": "Augmented Reality JavaScript Framework.",
|
||||
"main": "build/tracking.js",
|
||||
"keywords": [
|
||||
"tracking",
|
||||
"webrtc"
|
||||
],
|
||||
"license": "BSD",
|
||||
"ignore": [
|
||||
"**/.*",
|
||||
"node_modules"
|
||||
],
|
||||
"dependencies": {
|
||||
"dat-gui": "0.5.0",
|
||||
"threejs": "r67"
|
||||
}
|
||||
}
|
After Width: | Height: | Size: 35 KiB |
After Width: | Height: | Size: 22 KiB |
After Width: | Height: | Size: 40 KiB |
After Width: | Height: | Size: 40 KiB |
After Width: | Height: | Size: 35 KiB |
After Width: | Height: | Size: 22 KiB |
|
@ -0,0 +1,94 @@
|
|||
function initGUIControllers(tracker) {
|
||||
// GUI Controllers
|
||||
|
||||
var gui = new dat.GUI();
|
||||
|
||||
var trackedColors = {
|
||||
custom: false
|
||||
};
|
||||
|
||||
Object.keys(tracking.ColorTracker.knownColors_).forEach(function(color) {
|
||||
trackedColors[color] = true;
|
||||
});
|
||||
|
||||
tracker.customColor = '#000000';
|
||||
|
||||
function createCustomColor(value) {
|
||||
var components = /^#?([a-f\d]{2})([a-f\d]{2})([a-f\d]{2})$/i.exec(value);
|
||||
var customColorR = parseInt(components[1], 16);
|
||||
var customColorG = parseInt(components[2], 16);
|
||||
var customColorB = parseInt(components[3], 16);
|
||||
|
||||
var colorTotal = customColorR + customColorG + customColorB;
|
||||
|
||||
if (colorTotal === 0) {
|
||||
tracking.ColorTracker.registerColor('custom', function(r, g, b) {
|
||||
return r + g + b < 10;
|
||||
});
|
||||
} else {
|
||||
var rRatio = customColorR / colorTotal;
|
||||
var gRatio = customColorG / colorTotal;
|
||||
|
||||
tracking.ColorTracker.registerColor('custom', function(r, g, b) {
|
||||
var colorTotal2 = r + g + b;
|
||||
|
||||
if (colorTotal2 === 0) {
|
||||
if (colorTotal < 10) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
var rRatio2 = r / colorTotal2,
|
||||
gRatio2 = g / colorTotal2,
|
||||
deltaColorTotal = colorTotal / colorTotal2,
|
||||
deltaR = rRatio / rRatio2,
|
||||
deltaG = gRatio / gRatio2;
|
||||
|
||||
return deltaColorTotal > 0.9 && deltaColorTotal < 1.1 &&
|
||||
deltaR > 0.9 && deltaR < 1.1 &&
|
||||
deltaG > 0.9 && deltaG < 1.1;
|
||||
});
|
||||
}
|
||||
|
||||
updateColors();
|
||||
}
|
||||
|
||||
function updateColors() {
|
||||
var colors = [];
|
||||
|
||||
for (var color in trackedColors) {
|
||||
if (trackedColors[color]) {
|
||||
colors.push(color);
|
||||
}
|
||||
}
|
||||
|
||||
tracker.setColors(colors);
|
||||
}
|
||||
|
||||
var colorsFolder = gui.addFolder('Colors');
|
||||
|
||||
Object.keys(trackedColors).forEach(function(color) {
|
||||
if (color !== 'custom') {
|
||||
colorsFolder.add(trackedColors, color).onFinishChange(updateColors);
|
||||
}
|
||||
});
|
||||
|
||||
colorsFolder.add(trackedColors, 'custom').onFinishChange(function(value) {
|
||||
if (value) {
|
||||
this.customColorElement = colorsFolder.addColor(tracker, 'customColor').onChange(createCustomColor);
|
||||
} else {
|
||||
colorsFolder.remove(this.customColorElement);
|
||||
}
|
||||
});
|
||||
|
||||
var parametersFolder = gui.addFolder('Parameters');
|
||||
|
||||
parametersFolder.add(tracker, 'minDimension', 1, 100);
|
||||
parametersFolder.add(tracker, 'minGroupSize', 1, 100);
|
||||
|
||||
colorsFolder.open();
|
||||
parametersFolder.open();
|
||||
|
||||
updateColors();
|
||||
}
|
|
@ -0,0 +1,57 @@
|
|||
* {
|
||||
margin: 0;
|
||||
padding: 0;
|
||||
font-family: Helvetica, Arial, sans-serif;
|
||||
}
|
||||
|
||||
.demo-title {
|
||||
position: absolute;
|
||||
width: 100%;
|
||||
background: #2e2f33;
|
||||
z-index: 2;
|
||||
padding: .7em 0;
|
||||
}
|
||||
|
||||
.demo-title a {
|
||||
color: #fff;
|
||||
border-bottom: 1px dotted #a64ceb;
|
||||
text-decoration: none;
|
||||
}
|
||||
|
||||
.demo-title p {
|
||||
color: #fff;
|
||||
text-align: center;
|
||||
text-transform: lowercase;
|
||||
font-size: 15px;
|
||||
}
|
||||
|
||||
.demo-frame {
|
||||
background: url(frame.png) no-repeat;
|
||||
width: 854px;
|
||||
height: 658px;
|
||||
position: fixed;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
margin: -329px 0 0 -429px;
|
||||
padding: 95px 20px 45px 34px;
|
||||
overflow: hidden;
|
||||
-webkit-box-sizing: border-box;
|
||||
-moz-box-sizing: border-box;
|
||||
-ms-box-sizing: border-box;
|
||||
box-sizing: border-box;
|
||||
}
|
||||
|
||||
.demo-container {
|
||||
width: 100%;
|
||||
height: 530px;
|
||||
position: relative;
|
||||
background: #eee;
|
||||
overflow: hidden;
|
||||
border-bottom-right-radius: 10px;
|
||||
border-bottom-left-radius: 10px;
|
||||
}
|
||||
|
||||
.dg.ac {
|
||||
z-index: 100 !important;
|
||||
top: 50px !important;
|
||||
}
|
After Width: | Height: | Size: 34 KiB |
After Width: | Height: | Size: 24 KiB |
After Width: | Height: | Size: 56 KiB |
After Width: | Height: | Size: 285 KiB |
|
@ -0,0 +1,111 @@
|
|||
(function() {
|
||||
|
||||
var FishTankRenderer = function() {};
|
||||
|
||||
FishTankRenderer.prototype.init = function(container) {
|
||||
if (!FishTankRenderer.isWebGLEnabled()) {
|
||||
throw new Error('WebGL is not enabled in your browser.');
|
||||
}
|
||||
|
||||
var mesh, geometry;
|
||||
|
||||
this.spheres = [];
|
||||
|
||||
this.camera = new THREE.PerspectiveCamera(60, window.innerWidth / window.innerHeight, 1, 100000);
|
||||
this.camera.position.z = 3200;
|
||||
|
||||
this.scene = new THREE.Scene();
|
||||
|
||||
var geometry = new THREE.SphereGeometry(100, 32, 16);
|
||||
|
||||
var path = 'assets/fish_tank/';
|
||||
var format = '.png';
|
||||
var urls = [
|
||||
path + 'px' + format, path + 'nx' + format,
|
||||
path + 'py' + format, path + 'ny' + format,
|
||||
path + 'pz' + format, path + 'nz' + format
|
||||
];
|
||||
|
||||
var textureCube = THREE.ImageUtils.loadTextureCube(urls);
|
||||
var material = new THREE.MeshBasicMaterial({
|
||||
color: 0xffffff,
|
||||
envMap: textureCube
|
||||
});
|
||||
|
||||
for (var i = 0; i < 500; i++) {
|
||||
|
||||
var mesh = new THREE.Mesh(geometry, material);
|
||||
|
||||
mesh.position.x = Math.random() * 100000 - 50000;
|
||||
mesh.position.y = Math.random() * 100000 - 50000;
|
||||
mesh.position.z = Math.random() * 100000 - 50000;
|
||||
|
||||
mesh.scale.x = mesh.scale.y = mesh.scale.z = Math.random() * 3 + 1;
|
||||
|
||||
this.scene.add(mesh);
|
||||
|
||||
this.spheres.push(mesh);
|
||||
|
||||
}
|
||||
|
||||
// Skybox
|
||||
|
||||
var shader = THREE.ShaderLib["cube"];
|
||||
shader.uniforms["tCube"].value = textureCube;
|
||||
|
||||
var material = new THREE.ShaderMaterial({
|
||||
|
||||
fragmentShader: shader.fragmentShader,
|
||||
vertexShader: shader.vertexShader,
|
||||
uniforms: shader.uniforms,
|
||||
side: THREE.BackSide
|
||||
|
||||
}),
|
||||
|
||||
mesh = new THREE.Mesh(new THREE.BoxGeometry(100000, 100000, 100000), material);
|
||||
this.scene.add(mesh);
|
||||
|
||||
var _params = {
|
||||
minFilter: THREE.LinearFilter,
|
||||
magFilter: THREE.NearestFilter,
|
||||
format: THREE.RGBAFormat
|
||||
};
|
||||
|
||||
var width = window.innerWidth || 2;
|
||||
var height = window.innerHeight || 2;
|
||||
|
||||
this.renderer = new THREE.WebGLRenderer(width, height, _params);
|
||||
container.appendChild(this.renderer.domElement);
|
||||
this.renderer.setSize(width, height);
|
||||
};
|
||||
|
||||
FishTankRenderer.prototype.render = function(controlX, controlY) {
|
||||
var timer = 0.0001 * Date.now();
|
||||
|
||||
this.camera.position.x += (-controlX - this.camera.position.x) * 0.05;
|
||||
this.camera.position.y += (-controlY - this.camera.position.y) * 0.05;
|
||||
|
||||
this.camera.lookAt(this.scene.position);
|
||||
|
||||
for (var i = 0, il = this.spheres.length; i < il; i++) {
|
||||
var sphere = this.spheres[i];
|
||||
sphere.position.x += 50 * Math.cos(timer + i);
|
||||
sphere.position.y += 50 * Math.sin(timer + i * 1.1);
|
||||
}
|
||||
|
||||
this.renderer.render(this.scene, this.camera);
|
||||
};
|
||||
|
||||
FishTankRenderer.isWebGLEnabled = function() {
|
||||
try {
|
||||
var canvas = document.createElement('canvas');
|
||||
return !!window.WebGLRenderingContext &&
|
||||
(canvas.getContext('webgl') || canvas.getContext('experimental-webgl'));
|
||||
} catch (e) {
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
window.FishTankRenderer = FishTankRenderer;
|
||||
|
||||
})();
|
After Width: | Height: | Size: 62 KiB |
After Width: | Height: | Size: 80 KiB |
After Width: | Height: | Size: 83 KiB |
After Width: | Height: | Size: 71 KiB |
After Width: | Height: | Size: 75 KiB |
After Width: | Height: | Size: 87 KiB |
After Width: | Height: | Size: 9.7 KiB |
After Width: | Height: | Size: 40 KiB |
|
@ -0,0 +1 @@
|
|||
function HSVtoRGB(h,s,v,opacity){var toHex=function(decimalValue,places){if(places==undefined||isNaN(places))places=2;var hex=new Array("0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F");var next=0;var hexidecimal="";decimalValue=Math.floor(decimalValue);while(decimalValue>0){next=decimalValue%16;decimalValue=Math.floor((decimalValue-next)/16);hexidecimal=hex[next]+hexidecimal}while(hexidecimal.length<places){hexidecimal="0"+hexidecimal}return hexidecimal};var hi=Math.floor(h/60)%6;var f=h/60-Math.floor(h/60);var p=v*(1-s);var q=v*(1-f*s);var t=v*(1-(1-f)*s);var r=v;var g=t;var b=p;switch(hi){case 1:r=q;g=v;b=p;break;case 2:r=p;g=v;b=t;break;case 3:r=p;g=q;b=v;break;case 4:r=t;g=p;b=v;break;case 5:r=v;g=p;b=q;break}if(opacity){return"rgba("+Math.round(255*r)+","+Math.round(255*g)+","+Math.round(255*b)+","+opacity+")"}else{return"#"+toHex(r*255)+toHex(g*255)+toHex(b*255)}}function hexToCanvasColor(hexColor,opacity){opacity=opacity||"1.0";hexColor=hexColor.replace("#","");var r=parseInt(hexColor.substring(0,2),16);var g=parseInt(hexColor.substring(2,4),16);var b=parseInt(hexColor.substring(4,6),16);return"rgba("+r+","+g+","+b+","+opacity+")"}function drawPoint(ctx,x,y,r,color){ctx.save();ctx.beginPath();ctx.lineWidth=1;ctx.fillStyle=hexToCanvasColor(color,1);ctx.arc(x,y,r,0,2*Math.PI,false);ctx.closePath();ctx.stroke();ctx.fill();ctx.restore()}function getControlPoints(x0,y0,x1,y1,x2,y2,t){var d01=Math.sqrt(Math.pow(x1-x0,2)+Math.pow(y1-y0,2));var d12=Math.sqrt(Math.pow(x2-x1,2)+Math.pow(y2-y1,2));var fa=t*d01/(d01+d12);var fb=t-fa;var p1x=x1+fa*(x0-x2);var p1y=y1+fa*(y0-y2);var p2x=x1-fb*(x0-x2);var p2y=y1-fb*(y0-y2);return[p1x,p1y,p2x,p2y]}function drawControlLine(ctx,x,y,px,py){ctx.save();ctx.beginPath();ctx.lineWidth=1;ctx.strokeStyle="rgba(0,0,0,0.3)";ctx.moveTo(x,y);ctx.lineTo(px,py);ctx.closePath();ctx.stroke();drawPoint(ctx,px,py,1.5,"#000000");ctx.restore()}function drawSpline(ctx,pts,t,closed){showDetails=true;ctx.lineWidth=4;ctx.save();var cp=[];var n=pts.length;if(closed){pts.push(pts[0],pts[1],pts[2],pts[3]);pts.unshift(pts[n-1]);pts.unshift(pts[n-1]);for(var i=0;i<n;i+=2){cp=cp.concat(getControlPoints(pts[i],pts[i+1],pts[i+2],pts[i+3],pts[i+4],pts[i+5],t))}cp=cp.concat(cp[0],cp[1]);for(var i=2;i<n+2;i+=2){var color=HSVtoRGB(Math.floor(240*(i-2)/(n-2)),.8,.8);if(!showDetails){color="#555555"}ctx.strokeStyle=hexToCanvasColor(color,.75);ctx.beginPath();ctx.moveTo(pts[i],pts[i+1]);ctx.bezierCurveTo(cp[2*i-2],cp[2*i-1],cp[2*i],cp[2*i+1],pts[i+2],pts[i+3]);ctx.stroke();ctx.closePath()}}else{for(var i=0;i<n-4;i+=2){cp=cp.concat(getControlPoints(pts[i],pts[i+1],pts[i+2],pts[i+3],pts[i+4],pts[i+5],t))}for(var i=2;i<pts.length-5;i+=2){var color=HSVtoRGB(Math.floor(240*(i-2)/(n-2)),.8,.8);if(!showDetails){color="#555555"}ctx.strokeStyle=hexToCanvasColor(color,.75);ctx.beginPath();ctx.moveTo(pts[i],pts[i+1]);ctx.bezierCurveTo(cp[2*i-2],cp[2*i-1],cp[2*i],cp[2*i+1],pts[i+2],pts[i+3]);ctx.stroke();ctx.closePath()}var color=HSVtoRGB(40,.4,.4);if(!showDetails){color="#555555"}ctx.strokeStyle=hexToCanvasColor(color,.75);ctx.beginPath();ctx.moveTo(pts[0],pts[1]);ctx.quadraticCurveTo(cp[0],cp[1],pts[2],pts[3]);ctx.stroke();ctx.closePath();var color=HSVtoRGB(240,.8,.8);if(!showDetails){color="#555555"}ctx.strokeStyle=hexToCanvasColor(color,.75);ctx.beginPath();ctx.moveTo(pts[n-2],pts[n-1]);ctx.quadraticCurveTo(cp[2*n-10],cp[2*n-9],pts[n-4],pts[n-3]);ctx.stroke();ctx.closePath()}ctx.restore()}
|
|
@ -0,0 +1,31 @@
|
|||
// stats.js - http://github.com/mrdoob/stats.js
|
||||
var Stats=function(){var l=Date.now(),m=l,g=0,n=Infinity,o=0,h=0,p=Infinity,q=0,r=0,s=0,f=document.createElement("div");f.id="stats";f.addEventListener("mousedown",function(b){b.preventDefault();t(++s%2)},!1);f.style.cssText="width:80px;opacity:0.9;cursor:pointer";var a=document.createElement("div");a.id="fps";a.style.cssText="padding:0 0 3px 3px;text-align:left;background-color:#002";f.appendChild(a);var i=document.createElement("div");i.id="fpsText";i.style.cssText="color:#0ff;font-family:Helvetica,Arial,sans-serif;font-size:9px;font-weight:bold;line-height:15px";
|
||||
i.innerHTML="FPS";a.appendChild(i);var c=document.createElement("div");c.id="fpsGraph";c.style.cssText="position:relative;width:74px;height:30px;background-color:#0ff";for(a.appendChild(c);74>c.children.length;){var j=document.createElement("span");j.style.cssText="width:1px;height:30px;float:left;background-color:#113";c.appendChild(j)}var d=document.createElement("div");d.id="ms";d.style.cssText="padding:0 0 3px 3px;text-align:left;background-color:#020;display:none";f.appendChild(d);var k=document.createElement("div");
|
||||
k.id="msText";k.style.cssText="color:#0f0;font-family:Helvetica,Arial,sans-serif;font-size:9px;font-weight:bold;line-height:15px";k.innerHTML="MS";d.appendChild(k);var e=document.createElement("div");e.id="msGraph";e.style.cssText="position:relative;width:74px;height:30px;background-color:#0f0";for(d.appendChild(e);74>e.children.length;)j=document.createElement("span"),j.style.cssText="width:1px;height:30px;float:left;background-color:#131",e.appendChild(j);var t=function(b){s=b;switch(s){case 0:a.style.display=
|
||||
"block";d.style.display="none";break;case 1:a.style.display="none",d.style.display="block"}};return{REVISION:11,domElement:f,setMode:t,begin:function(){l=Date.now()},end:function(){var b=Date.now();g=b-l;n=Math.min(n,g);o=Math.max(o,g);k.textContent=g+" MS ("+n+"-"+o+")";var a=Math.min(30,30-30*(g/200));e.appendChild(e.firstChild).style.height=a+"px";r++;b>m+1E3&&(h=Math.round(1E3*r/(b-m)),p=Math.min(p,h),q=Math.max(q,h),i.textContent=h+" FPS ("+p+"-"+q+")",a=Math.min(30,30-30*(h/100)),c.appendChild(c.firstChild).style.height=
|
||||
a+"px",m=b,r=0);return b},update:function(){l=this.end()}}};
|
||||
|
||||
var stats = new Stats();
|
||||
stats.setMode(2);
|
||||
stats.domElement.style.position = 'absolute';
|
||||
stats.domElement.style.left = '10px';
|
||||
stats.domElement.style.top = '50px';
|
||||
stats.domElement.style.zIndex = 100;
|
||||
document.addEventListener('DOMContentLoaded', function(event) {
|
||||
document.body.appendChild(stats.domElement);
|
||||
});
|
||||
|
||||
var objectEmit_ = tracking.ObjectTracker.prototype.emit;
|
||||
var colorEmit_ = tracking.ColorTracker.prototype.emit;
|
||||
|
||||
stats.begin();
|
||||
|
||||
tracking.ObjectTracker.prototype.emit = function() {
|
||||
stats.end();
|
||||
objectEmit_.apply(this, arguments);
|
||||
};
|
||||
|
||||
tracking.ColorTracker.prototype.emit = function() {
|
||||
stats.end();
|
||||
colorEmit_.apply(this, arguments);
|
||||
};
|
|
@ -0,0 +1,105 @@
|
|||
<!doctype html>
|
||||
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - feature matching</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
|
||||
<style>
|
||||
.demo-container {
|
||||
background-color: black;
|
||||
}
|
||||
#image1, #image2 {
|
||||
position: absolute;
|
||||
left: -1000px;
|
||||
top: -1000px;
|
||||
}
|
||||
#canvas {
|
||||
position: absolute;
|
||||
left: 50%;
|
||||
top: 50%;
|
||||
margin-left: -393px;
|
||||
margin-top: -147px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - match similar feature points in two images</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<img id="image1" src="assets/brief1.png" />
|
||||
<img id="image2" src="assets/brief2.png" />
|
||||
<canvas id="canvas" width="786" height="295"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var width = 393;
|
||||
var height = 295;
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var image1 = document.getElementById('image1');
|
||||
var image2 = document.getElementById('image2');
|
||||
|
||||
window.descriptorLength = 256;
|
||||
window.matchesShown = 30;
|
||||
window.blurRadius = 3;
|
||||
|
||||
var doMatch = function() {
|
||||
tracking.Brief.N = window.descriptorLength;
|
||||
|
||||
context.drawImage(image1, 0, 0, width, height);
|
||||
context.drawImage(image2, width, 0, width, height);
|
||||
|
||||
var imageData1 = context.getImageData(0, 0, width, height);
|
||||
var imageData2 = context.getImageData(width, 0, width, height);
|
||||
|
||||
var gray1 = tracking.Image.grayscale(tracking.Image.blur(imageData1.data, width, height, blurRadius), width, height);
|
||||
var gray2 = tracking.Image.grayscale(tracking.Image.blur(imageData2.data, width, height, blurRadius), width, height);
|
||||
|
||||
var corners1 = tracking.Fast.findCorners(gray1, width, height);
|
||||
var corners2 = tracking.Fast.findCorners(gray2, width, height);
|
||||
|
||||
var descriptors1 = tracking.Brief.getDescriptors(gray1, width, corners1);
|
||||
var descriptors2 = tracking.Brief.getDescriptors(gray2, width, corners2);
|
||||
|
||||
var matches = tracking.Brief.reciprocalMatch(corners1, descriptors1, corners2, descriptors2);
|
||||
|
||||
matches.sort(function(a, b) {
|
||||
return b.confidence - a.confidence;
|
||||
});
|
||||
|
||||
for (var i = 0; i < Math.min(window.matchesShown, matches.length); i++) {
|
||||
var color = '#' + Math.floor(Math.random()*16777215).toString(16);
|
||||
context.fillStyle = color;
|
||||
context.strokeStyle = color;
|
||||
context.fillRect(matches[i].keypoint1[0], matches[i].keypoint1[1], 4, 4);
|
||||
context.fillRect(matches[i].keypoint2[0] + width, matches[i].keypoint2[1], 4, 4);
|
||||
|
||||
context.beginPath();
|
||||
context.moveTo(matches[i].keypoint1[0], matches[i].keypoint1[1]);
|
||||
context.lineTo(matches[i].keypoint2[0] + width, matches[i].keypoint2[1]);
|
||||
context.stroke();
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
doMatch();
|
||||
|
||||
var gui = new dat.GUI();
|
||||
gui.add(window, 'descriptorLength', 128, 512).step(32).onChange(doMatch);
|
||||
gui.add(window, 'matchesShown', 1, 100).onChange(doMatch);
|
||||
gui.add(window, 'blurRadius', 1.1, 5).onChange(doMatch);
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,185 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
|
||||
<title>tracking.js - bounding box with camera</title>
|
||||
|
||||
<meta charset="utf-8">
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
|
||||
<style>
|
||||
#boundingBox {
|
||||
display: none;
|
||||
position: absolute;
|
||||
background: white;
|
||||
border: 1px dashed;
|
||||
opacity: .5;
|
||||
z-index: 1;
|
||||
}
|
||||
#video {
|
||||
position: absolute;
|
||||
top: -1000px;
|
||||
cursor: crosshair;
|
||||
}
|
||||
body {
|
||||
-webkit-touch-callout: none;
|
||||
-webkit-user-select: none;
|
||||
-khtml-user-select: none;
|
||||
-moz-user-select: none;
|
||||
-ms-user-select: none;
|
||||
user-select: none;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - Click and drag to select the area to be tracked</p>
|
||||
</div>
|
||||
|
||||
<div id="boundingBox"></div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<video id="video" width="393" height="295" preload autoplay loop muted controls></video>
|
||||
<canvas id="canvas" width="800" height="530"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
(function() {
|
||||
// BoundingBoxTracker ======================================================
|
||||
var BoundingBoxTracker = function() {
|
||||
BoundingBoxTracker.base(this, 'constructor');
|
||||
};
|
||||
tracking.inherits(BoundingBoxTracker, tracking.Tracker);
|
||||
|
||||
BoundingBoxTracker.prototype.templateDescriptors_ = null;
|
||||
BoundingBoxTracker.prototype.templateKeypoints_ = null;
|
||||
BoundingBoxTracker.prototype.fastThreshold = 60;
|
||||
BoundingBoxTracker.prototype.blur = 3;
|
||||
|
||||
BoundingBoxTracker.prototype.setTemplate = function(pixels, width, height) {
|
||||
var blur = tracking.Image.blur(pixels, width, height, 3);
|
||||
var grayscale = tracking.Image.grayscale(blur, width, height);
|
||||
this.templateKeypoints_ = tracking.Fast.findCorners(grayscale, width, height);
|
||||
this.templateDescriptors_ = tracking.Brief.getDescriptors(grayscale, width, this.templateKeypoints_);
|
||||
};
|
||||
|
||||
BoundingBoxTracker.prototype.track = function(pixels, width, height) {
|
||||
var blur = tracking.Image.blur(pixels, width, height, this.blur);
|
||||
var grayscale = tracking.Image.grayscale(blur, width, height);
|
||||
var keypoints = tracking.Fast.findCorners(grayscale, width, height, this.fastThreshold);
|
||||
var descriptors = tracking.Brief.getDescriptors(grayscale, width, keypoints);
|
||||
this.emit('track', {
|
||||
data: tracking.Brief.reciprocalMatch(this.templateKeypoints_, this.templateDescriptors_, keypoints, descriptors)
|
||||
});
|
||||
};
|
||||
|
||||
// Track ===================================================================
|
||||
var boundingBox = document.getElementById('boundingBox');
|
||||
var boxLeft = 403;
|
||||
var video = document.getElementById('video');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var canvasRect = canvas.getBoundingClientRect();
|
||||
var context = canvas.getContext('2d');
|
||||
var templateImageData;
|
||||
var capturing = false;
|
||||
var videoHeight = 295;
|
||||
var videoWidth = 393;
|
||||
|
||||
var tracker = new BoundingBoxTracker();
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
stats.end();
|
||||
|
||||
if (capturing) {
|
||||
return;
|
||||
}
|
||||
// Sorts best matches by confidence.
|
||||
event.data.sort(function(a, b) {
|
||||
return b.confidence - a.confidence;
|
||||
});
|
||||
// Re-draws template on canvas.
|
||||
context.putImageData(templateImageData, boxLeft, 0);
|
||||
|
||||
// Plots lines connecting matches.
|
||||
for (var i = 0; i < Math.min(10, event.data.length); i++) {
|
||||
var template = event.data[i].keypoint1;
|
||||
var frame = event.data[i].keypoint2;
|
||||
context.beginPath();
|
||||
context.strokeStyle = 'magenta';
|
||||
context.moveTo(frame[0], frame[1]);
|
||||
context.lineTo(boxLeft + template[0], template[1]);
|
||||
context.stroke();
|
||||
}
|
||||
});
|
||||
|
||||
var trackerTask = tracking.track(video, tracker, { camera: true });
|
||||
// Waits for the user to accept the camera.
|
||||
trackerTask.stop();
|
||||
|
||||
// Sync video ============================================================
|
||||
function requestFrame() {
|
||||
window.requestAnimationFrame(function() {
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
if (video.readyState === video.HAVE_ENOUGH_DATA) {
|
||||
try {
|
||||
context.drawImage(video, 0, 0, videoWidth, videoHeight);
|
||||
} catch (err) {}
|
||||
}
|
||||
requestFrame();
|
||||
});
|
||||
}
|
||||
requestFrame();
|
||||
|
||||
// Bounding box drag =====================================================
|
||||
var initialPoint;
|
||||
var left;
|
||||
var top;
|
||||
var width;
|
||||
var height;
|
||||
canvas.addEventListener('mousedown', function(event) {
|
||||
initialPoint = [event.pageX, event.pageY];
|
||||
capturing = true;
|
||||
});
|
||||
canvas.addEventListener('mousemove', function(event) {
|
||||
if (capturing) {
|
||||
left = Math.min(initialPoint[0], event.pageX);
|
||||
top = Math.min(initialPoint[1], event.pageY);
|
||||
width = Math.max(initialPoint[0], event.pageX) - left;
|
||||
height = Math.max(initialPoint[1], event.pageY) - top;
|
||||
boundingBox.style.display = 'block';
|
||||
boundingBox.style.left = left + 'px';
|
||||
boundingBox.style.top = top + 'px';
|
||||
boundingBox.style.width = width + 'px';
|
||||
boundingBox.style.height = height + 'px';
|
||||
}
|
||||
});
|
||||
document.addEventListener('mouseup', function() {
|
||||
boundingBox.style.display = 'none';
|
||||
setTackerTemplate(left, top, width, height);
|
||||
capturing = false;
|
||||
});
|
||||
function setTackerTemplate(left, top, width, height) {
|
||||
templateImageData = context.getImageData(left - canvasRect.left, top - canvasRect.top, width, height);
|
||||
canvas.width = boxLeft + width;
|
||||
context.putImageData(templateImageData, boxLeft, 0);
|
||||
trackerTask.stop();
|
||||
tracker.setTemplate(templateImageData.data, width, height);
|
||||
trackerTask.run();
|
||||
}
|
||||
|
||||
// GUI Controllers
|
||||
var gui = new dat.GUI();
|
||||
gui.add(tracker, 'fastThreshold', 20, 100).step(5);
|
||||
gui.add(tracker, 'blur', 1.1, 5.0).step(0.1);
|
||||
}());
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,65 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - color with camera</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
<script src="assets/color_camera_gui.js"></script>
|
||||
|
||||
<style>
|
||||
video, canvas {
|
||||
margin-left: 100px;
|
||||
margin-top: 35px;
|
||||
position: absolute;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - choose the colors you want to detect through the controls on the right</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<video id="video" width="600" height="450" preload autoplay loop muted controls></video>
|
||||
<canvas id="canvas" width="600" height="450"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var video = document.getElementById('video');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var tracker = new tracking.ColorTracker();
|
||||
|
||||
tracking.track('#video', tracker, { camera: true });
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
|
||||
event.data.forEach(function(rect) {
|
||||
if (rect.color === 'custom') {
|
||||
rect.color = tracker.customColor;
|
||||
}
|
||||
|
||||
context.strokeStyle = rect.color;
|
||||
context.strokeRect(rect.x, rect.y, rect.width, rect.height);
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11);
|
||||
context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22);
|
||||
});
|
||||
});
|
||||
|
||||
initGUIControllers(tracker);
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,114 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - draw something</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking.js"></script>
|
||||
<script src="assets/splines.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
|
||||
<style>
|
||||
#canvas,
|
||||
#video {
|
||||
height: 300px;
|
||||
position: absolute;
|
||||
width: 400px;
|
||||
padding-top: 66px;
|
||||
}
|
||||
.draw-frame {
|
||||
background: url(assets/draw_frame.png);
|
||||
width: 400px;
|
||||
height: 414px;
|
||||
border: 1px solid #ccc;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
position: absolute;
|
||||
margin: -207px 0 0 -200px;
|
||||
}
|
||||
|
||||
canvas, video {
|
||||
-moz-transform: scale(-1, 1);
|
||||
-o-transform: scale(-1, 1);
|
||||
-webkit-transform: scale(-1, 1);
|
||||
filter: FlipH;
|
||||
transform: scale(-1, 1);
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - use magenta color to draw and cyan to erase</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<div class="draw-frame">
|
||||
<video id="video" width="400" height="300" preload autoplay loop muted></video>
|
||||
<canvas id="canvas" width="400" height="300"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var video = document.getElementById('video');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var drawSegments = [[]];
|
||||
var segment = 0;
|
||||
|
||||
var tracker = new tracking.ColorTracker(['magenta', 'cyan']);
|
||||
|
||||
tracking.track('#video', tracker, { camera: true });
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
if (event.data.length === 0 && drawSegments[segment].length > 0) {
|
||||
segment++;
|
||||
|
||||
if (!drawSegments[segment]) {
|
||||
drawSegments[segment] = [];
|
||||
}
|
||||
}
|
||||
|
||||
event.data.forEach(function(rect) {
|
||||
if (rect.color === 'magenta') {
|
||||
draw(rect);
|
||||
}
|
||||
else if (rect.color === 'cyan') {
|
||||
erase(rect);
|
||||
}
|
||||
});
|
||||
});
|
||||
|
||||
function draw(rect) {
|
||||
drawSegments[segment].push(rect.x + rect.width / 2, rect.y + rect.height / 2);
|
||||
}
|
||||
|
||||
function erase(rect) {
|
||||
context.clearRect(rect.x, rect.y, rect.width, rect.height);
|
||||
}
|
||||
|
||||
function isInsideRect(x, y, rect) {
|
||||
return rect.x <= x && x <= rect.x + rect.width &&
|
||||
rect.y <= y && y <= rect.y + rect.height;
|
||||
}
|
||||
|
||||
(function loop() {
|
||||
for (var i = 0, len = drawSegments.length; i < len; i++) {
|
||||
drawSpline(context, drawSegments[i], 0.5, false);
|
||||
}
|
||||
|
||||
drawSegments = [drawSegments[drawSegments.length - 1]];
|
||||
segment = 0;
|
||||
|
||||
requestAnimationFrame(loop);
|
||||
}());
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,150 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - color tracking fish tank</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../../threejs/build/three.min.js"></script>
|
||||
|
||||
<style>
|
||||
body {
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
#video, #canvas {
|
||||
bottom: 0;
|
||||
position: absolute;
|
||||
z-index: 100;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - use a magenta colored object to control the scene</p>
|
||||
</div>
|
||||
|
||||
<video id="video" width="320" height="240" preload autoplay loop muted></video>
|
||||
<canvas id="canvas" width="320" height="240"></canvas>
|
||||
|
||||
<script>
|
||||
var container;
|
||||
var camera, scene, renderer, group, particle;
|
||||
var mouseX = 0, mouseY = 0;
|
||||
var video = document.getElementById('video');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var windowHalfX = window.innerWidth / 2;
|
||||
var windowHalfY = window.innerHeight / 2;
|
||||
|
||||
init();
|
||||
animate();
|
||||
|
||||
window.onload = function() {
|
||||
var tracker = new tracking.ColorTracker();
|
||||
tracker.setMinDimension(5);
|
||||
tracker.setMinGroupSize(10);
|
||||
|
||||
tracking.track('#video', tracker, { camera: true });
|
||||
|
||||
tracker.on('track', onColorMove);
|
||||
};
|
||||
|
||||
function init() {
|
||||
container = document.createElement('div');
|
||||
document.body.appendChild(container);
|
||||
|
||||
camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 1, 3000);
|
||||
camera.position.z = 1000;
|
||||
|
||||
scene = new THREE.Scene();
|
||||
|
||||
var PI2 = Math.PI * 2;
|
||||
var program = function (context) {
|
||||
context.beginPath();
|
||||
context.arc(0, 0, 0.5, 0, PI2, true);
|
||||
context.fill();
|
||||
}
|
||||
|
||||
group = new THREE.Object3D();
|
||||
scene.add(group);
|
||||
|
||||
for (var i = 0; i < 1000; i++) {
|
||||
var material = new THREE.SpriteCanvasMaterial({
|
||||
color: Math.random() * 0x808008 + 0x808080,
|
||||
program: program
|
||||
});
|
||||
|
||||
particle = new THREE.Sprite(material);
|
||||
particle.position.x = Math.random() * 2000 - 1000;
|
||||
particle.position.y = Math.random() * 2000 - 1000;
|
||||
particle.position.z = Math.random() * 2000 - 1000;
|
||||
particle.scale.x = particle.scale.y = Math.random() * 20 + 10;
|
||||
|
||||
group.add(particle);
|
||||
}
|
||||
|
||||
renderer = new THREE.CanvasRenderer();
|
||||
renderer.setSize(window.innerWidth, window.innerHeight);
|
||||
container.appendChild(renderer.domElement);
|
||||
|
||||
window.addEventListener('resize', onWindowResize, false);
|
||||
}
|
||||
|
||||
function onWindowResize() {
|
||||
windowHalfX = window.innerWidth / 2;
|
||||
windowHalfY = window.innerHeight / 2;
|
||||
|
||||
camera.aspect = window.innerWidth / window.innerHeight;
|
||||
camera.updateProjectionMatrix();
|
||||
|
||||
renderer.setSize(window.innerWidth, window.innerHeight);
|
||||
}
|
||||
|
||||
function onColorMove(event) {
|
||||
if (event.data.length === 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
var maxRect;
|
||||
var maxRectArea = 0;
|
||||
|
||||
event.data.forEach(function(rect) {
|
||||
if (rect.width * rect.height > maxRectArea){
|
||||
maxRectArea = rect.width * rect.height;
|
||||
maxRect = rect;
|
||||
}
|
||||
});
|
||||
|
||||
if (maxRectArea > 0) {
|
||||
var rectCenterX = maxRect.x + (maxRect.width/2);
|
||||
var rectCenterY = maxRect.y + (maxRect.height/2);
|
||||
mouseX = (rectCenterX - 160) * (window.innerWidth/320) * 10;
|
||||
mouseY = (rectCenterY - 120) * (window.innerHeight/240) * 10;
|
||||
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
context.strokeStyle = maxRect.color;
|
||||
context.strokeRect(maxRect.x, maxRect.y, maxRect.width, maxRect.height);
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('x: ' + maxRect.x + 'px', maxRect.x + maxRect.width + 5, maxRect.y + 11);
|
||||
context.fillText('y: ' + maxRect.y + 'px', maxRect.x + maxRect.width + 5, maxRect.y + 22);
|
||||
}
|
||||
}
|
||||
|
||||
function animate() {
|
||||
window.requestAnimationFrame(animate);
|
||||
render();
|
||||
}
|
||||
|
||||
function render() {
|
||||
camera.position.x += (mouseX - camera.position.x) * 0.05;
|
||||
camera.position.y += (- mouseY - camera.position.y) * 0.05;
|
||||
camera.lookAt(scene.position);
|
||||
renderer.render(scene, camera);
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,60 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - color hello world</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
|
||||
<style>
|
||||
.rect {
|
||||
width: 80px;
|
||||
height: 80px;
|
||||
position: absolute;
|
||||
left: -1000px;
|
||||
top: -1000px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - detect certain colors in a image</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<img id="img" src="assets/psmove.png" />
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var img = document.getElementById('img');
|
||||
var demoContainer = document.querySelector('.demo-container');
|
||||
|
||||
var tracker = new tracking.ColorTracker(['magenta', 'cyan', 'yellow']);
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
event.data.forEach(function(rect) {
|
||||
window.plot(rect.x, rect.y, rect.width, rect.height, rect.color);
|
||||
});
|
||||
});
|
||||
|
||||
tracking.track('#img', tracker);
|
||||
|
||||
window.plot = function(x, y, w, h, color) {
|
||||
var rect = document.createElement('div');
|
||||
document.querySelector('.demo-container').appendChild(rect);
|
||||
rect.classList.add('rect');
|
||||
rect.style.border = '2px solid ' + color;
|
||||
rect.style.width = w + 'px';
|
||||
rect.style.height = h + 'px';
|
||||
rect.style.left = (img.offsetLeft + x) + 'px';
|
||||
rect.style.top = (img.offsetTop + y) + 'px';
|
||||
};
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,82 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - color with video</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
<script src="assets/color_camera_gui.js"></script>
|
||||
|
||||
<style>
|
||||
.demo-container {
|
||||
background-color: black;
|
||||
}
|
||||
|
||||
video, canvas {
|
||||
position: absolute;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - detect certain colors in a video</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<div id="rectangle"></div>
|
||||
<video id="video" width="800" height="530" preload autoplay loop muted controls>
|
||||
<source src="assets/minions.mp4" type="video/mp4">
|
||||
<source src="assets/minions.ogv" type="video/ogg">
|
||||
</video>
|
||||
<canvas id="canvas" width="800" height="500"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
tracking.ColorTracker.registerColor('purple', function(r, g, b) {
|
||||
var dx = r - 120;
|
||||
var dy = g - 60;
|
||||
var dz = b - 210;
|
||||
|
||||
if ((b - g) >= 100 && (r - g) >= 60) {
|
||||
return true;
|
||||
}
|
||||
return dx * dx + dy * dy + dz * dz < 3500;
|
||||
});
|
||||
|
||||
var tracker = new tracking.ColorTracker(['yellow', 'purple']);
|
||||
tracker.setMinDimension(5);
|
||||
|
||||
tracking.track('#video', tracker);
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
|
||||
event.data.forEach(function(rect) {
|
||||
if (rect.color === 'custom') {
|
||||
rect.color = tracker.customColor;
|
||||
}
|
||||
|
||||
context.strokeStyle = rect.color;
|
||||
context.strokeRect(rect.x, rect.y, rect.width, rect.height);
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11);
|
||||
context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22);
|
||||
});
|
||||
});
|
||||
|
||||
initGUIControllers(tracker);
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,100 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - face alignment with images</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
<script src="../src/alignment/training/Landmarks.js"></script>
|
||||
<script src="../src/alignment/training/Regressor.js"></script>
|
||||
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
|
||||
<style>
|
||||
.rect, .circle {
|
||||
left: -1000px;
|
||||
position: absolute;
|
||||
top: -1000px;
|
||||
}
|
||||
.rect{
|
||||
border: 2px solid #a64ceb;
|
||||
}
|
||||
.circle {
|
||||
border-radius: 50%;
|
||||
box-shadow: 0px 0px 3px rgba(0,0,0,0.3);
|
||||
}
|
||||
#img {
|
||||
position: absolute;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
margin: -200px 0 0 -200px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - align face landmarks to images</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<img id="img" src="assets/emilia.jpg" />
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var img = document.getElementById('img');
|
||||
|
||||
var tracker = new tracking.LandmarksTracker();
|
||||
tracker.setInitialScale(4);
|
||||
tracker.setStepSize(2);
|
||||
tracker.setEdgesDensity(0.1);
|
||||
|
||||
tracking.track('#img', tracker);
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
|
||||
if(!event.data) return;
|
||||
|
||||
event.data.faces.forEach(function(rect) {
|
||||
window.plot(rect.x, rect.y, rect.width, rect.height);
|
||||
});
|
||||
|
||||
event.data.landmarks.forEach(function(landmarks) {
|
||||
for(var i=0; i < landmarks.length; i++){
|
||||
window.plotLandmark(landmarks[i][0], landmarks[i][1], 2, '#44ABDA');
|
||||
}
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
window.plot = function(x, y, w, h) {
|
||||
var rect = document.createElement('div');
|
||||
document.querySelector('.demo-container').appendChild(rect);
|
||||
rect.classList.add('rect');
|
||||
rect.style.width = w + 'px';
|
||||
rect.style.height = h + 'px';
|
||||
rect.style.left = (img.offsetLeft + x) + 'px';
|
||||
rect.style.top = (img.offsetTop + y) + 'px';
|
||||
};
|
||||
|
||||
window.plotLandmark = function(x,y, radius, color){
|
||||
var circle = document.createElement('div');
|
||||
document.querySelector('.demo-container').appendChild(circle);
|
||||
circle.classList.add('circle');
|
||||
circle.style.backgroundColor = color;
|
||||
circle.style.width = (radius*2) + 'px';
|
||||
circle.style.height = (radius*2) + 'px';
|
||||
circle.style.left = (img.offsetLeft + x) + 'px';
|
||||
circle.style.top = (img.offsetTop + y) + 'px';
|
||||
}
|
||||
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,84 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - face alignment with camera</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
<script src="../src/alignment/training/Landmarks.js"></script>
|
||||
<script src="../src/alignment/training/Regressor.js"></script>
|
||||
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
|
||||
<style>
|
||||
video, canvas {
|
||||
margin-left: 230px;
|
||||
margin-top: 120px;
|
||||
position: absolute;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - get user's webcam and align face landmarks to detected faces</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<video id="video" width="320" height="240" src="assets/franck.mp4" preload autoplay loop muted></video>
|
||||
<canvas id="canvas" width="320" height="240"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var video = document.getElementById('video');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var tracker = new tracking.LandmarksTracker();
|
||||
tracker.setInitialScale(4);
|
||||
tracker.setStepSize(2);
|
||||
tracker.setEdgesDensity(0.1);
|
||||
|
||||
tracking.track('#video', tracker);
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
|
||||
context.clearRect(0,0,canvas.width, canvas.height);
|
||||
|
||||
if(!event.data) return;
|
||||
|
||||
event.data.faces.forEach(function(rect) {
|
||||
context.strokeStyle = '#a64ceb';
|
||||
context.strokeRect(rect.x, rect.y, rect.width, rect.height);
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11);
|
||||
context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22);
|
||||
});
|
||||
|
||||
event.data.landmarks.forEach(function(landmarks) {
|
||||
for(var l in landmarks){
|
||||
context.beginPath();
|
||||
context.fillStyle = "#fff";
|
||||
context.arc(landmarks[l][0],landmarks[l][1],1,0,2*Math.PI);
|
||||
context.fill();
|
||||
}
|
||||
});
|
||||
|
||||
});
|
||||
|
||||
var gui = new dat.GUI();
|
||||
gui.add(tracker, 'edgesDensity', 0.1, 0.5).step(0.01).listen();
|
||||
gui.add(tracker, 'initialScale', 1.0, 10.0).step(0.1).listen();
|
||||
gui.add(tracker, 'stepSize', 1, 5).step(0.1).listen();
|
||||
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,229 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - face alignment with camera</title>
|
||||
<!-- here is the frame around each example - to be removed - to a fullscreen video - working on mobile too -->
|
||||
<!-- <link rel="stylesheet" href="assets/demo.css"> -->
|
||||
|
||||
<script src="../build/tracking.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
<script src="../src/alignment/training/Landmarks.js"></script>
|
||||
<script src="../src/alignment/training/Regressor.js"></script>
|
||||
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
</head>
|
||||
<body>
|
||||
<style>
|
||||
#videoWebcam {
|
||||
position: absolute;
|
||||
top: 0px;
|
||||
left: 0px;
|
||||
width : 320px;
|
||||
height: auto;
|
||||
zoom: 3;
|
||||
}
|
||||
#canvasDetection {
|
||||
position: absolute;
|
||||
top: 0px;
|
||||
left: 0px;
|
||||
width : 320px;
|
||||
height: auto;
|
||||
zoom: 3;
|
||||
}
|
||||
</style>
|
||||
<video id="videoWebcam" width="368" height="288" autoplay loop>
|
||||
<source src="./assets/franck.mp4" type="video/mp4"/>
|
||||
<source src="./assets/franck.ogv" type="video/ogg"/>
|
||||
</video>
|
||||
<!-- <video id="videoWebcam" preload autoplay loop muted></video> -->
|
||||
<canvas id="canvasDetection"></canvas>
|
||||
|
||||
<script>
|
||||
var canvasDetection = document.querySelector('#canvasDetection');
|
||||
canvasDetection.width = 320
|
||||
canvasDetection.height = 240
|
||||
var context = canvasDetection.getContext('2d');
|
||||
|
||||
// tracking.LBF.maxNumStages = 10
|
||||
var tracker = new tracking.LandmarksTracker();
|
||||
tracker.setEdgesDensity(0.1);
|
||||
tracker.setInitialScale(4);
|
||||
tracker.setStepSize(2);
|
||||
|
||||
tracker.setInitialScale(2);
|
||||
tracker.setStepSize(1);
|
||||
|
||||
|
||||
var gui = new dat.GUI();
|
||||
gui.add(tracker, 'edgesDensity', 0.1, 0.5).step(0.01).listen();
|
||||
gui.add(tracker, 'initialScale', 1.0, 10.0).step(0.1).listen();
|
||||
gui.add(tracker, 'stepSize', 0.5, 5).step(0.1).listen();
|
||||
|
||||
|
||||
var videoElement = document.querySelector('#videoWebcam')
|
||||
tracking.track(videoElement, tracker);
|
||||
// tracking.track(videoElement, tracker, { camera: true });
|
||||
|
||||
var landmarksPerFace = 30
|
||||
var landmarkFeatures = {
|
||||
jaw : {
|
||||
first: 0,
|
||||
last: 8,
|
||||
fillStyle: 'white',
|
||||
closed: false,
|
||||
},
|
||||
nose : {
|
||||
first:15,
|
||||
last: 18,
|
||||
fillStyle: 'green',
|
||||
closed: true,
|
||||
},
|
||||
mouth : {
|
||||
first:27,
|
||||
last: 30,
|
||||
fillStyle: 'red',
|
||||
closed: true,
|
||||
},
|
||||
eyeL : {
|
||||
first:19,
|
||||
last: 22,
|
||||
fillStyle: 'purple',
|
||||
closed: false,
|
||||
},
|
||||
eyeR : {
|
||||
first:23,
|
||||
last: 26,
|
||||
fillStyle: 'purple',
|
||||
closed: false,
|
||||
},
|
||||
eyeBrowL : {
|
||||
first: 9,
|
||||
last: 11,
|
||||
fillStyle: 'yellow',
|
||||
closed: false,
|
||||
},
|
||||
eyeBrowR : {
|
||||
first:12,
|
||||
last: 14,
|
||||
fillStyle: 'yellow',
|
||||
closed: false,
|
||||
},
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Code Separator
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
var parameters = {
|
||||
landmarkLerpFactor : 0.7,
|
||||
boundinBoxVisible : true,
|
||||
jawVisible : true,
|
||||
eyeBrowLVisible : true,
|
||||
eyeBrowRVisible : true,
|
||||
noseVisible : true,
|
||||
eyeLVisible : true,
|
||||
eyeRVisible : true,
|
||||
mouthVisible : true,
|
||||
}
|
||||
gui.add(parameters, 'landmarkLerpFactor', 0.0, 1).listen().name('Landmarks Lerp');
|
||||
gui.add(parameters, 'boundinBoxVisible', 0.0, 1).listen().name('bounding box');
|
||||
Object.keys(landmarkFeatures).forEach(function(featureLabel){
|
||||
gui.add(parameters, featureLabel + 'Visible').listen().name(featureLabel);
|
||||
})
|
||||
|
||||
var lerpedFacesLandmarks = []
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
// clear debug canvasDetection
|
||||
context.clearRect(0,0,canvasDetection.width, canvasDetection.height);
|
||||
|
||||
if( event.data === undefined ) return;
|
||||
|
||||
event.data.faces.forEach(function(boundingBox, faceIndex) {
|
||||
var faceLandmarks = event.data.landmarks[faceIndex]
|
||||
|
||||
if( parameters.boundinBoxVisible === true ) displayFaceLandmarksBoundingBox(boundingBox, faceIndex)
|
||||
|
||||
// lerpFacesLandmarks
|
||||
lerpFacesLandmarks(faceLandmarks)
|
||||
|
||||
// display each faceLandmarks
|
||||
displayFaceLandmarksDot(lerpedFacesLandmarks)
|
||||
});
|
||||
})
|
||||
|
||||
function lerpFacesLandmarks(newFaceLandmarks){
|
||||
// init lerpFacesLandmarks if needed
|
||||
for(var i = 0; i < newFaceLandmarks.length; i++){
|
||||
if( lerpedFacesLandmarks[i] !== undefined ) continue
|
||||
lerpedFacesLandmarks[i] = [
|
||||
newFaceLandmarks[i][0],
|
||||
newFaceLandmarks[i][1],
|
||||
]
|
||||
}
|
||||
|
||||
// init lerpFacesLandmarks if needed
|
||||
for(var i = 0; i < newFaceLandmarks.length; i++){
|
||||
var lerpFactor = parameters.landmarkLerpFactor
|
||||
lerpedFacesLandmarks[i][0] = newFaceLandmarks[i][0] * lerpFactor + lerpedFacesLandmarks[i][0] * (1-lerpFactor)
|
||||
lerpedFacesLandmarks[i][1] = newFaceLandmarks[i][1] * lerpFactor + lerpedFacesLandmarks[i][1] * (1-lerpFactor)
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
// Code Separator
|
||||
//////////////////////////////////////////////////////////////////////////////
|
||||
function displayFaceLandmarksBoundingBox(boundingBox, faceIndex){
|
||||
// display the box
|
||||
context.strokeStyle = '#a64ceb';
|
||||
context.strokeRect(boundingBox.x, boundingBox.y, boundingBox.width, boundingBox.height);
|
||||
|
||||
// display the size of the box
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('idx: '+faceIndex, boundingBox.x + boundingBox.width + 5, boundingBox.y + 11);
|
||||
context.fillText('x: ' + boundingBox.x + 'px', boundingBox.x + boundingBox.width + 5, boundingBox.y + 22);
|
||||
context.fillText('y: ' + boundingBox.y + 'px', boundingBox.x + boundingBox.width + 5, boundingBox.y + 33);
|
||||
}
|
||||
|
||||
function displayFaceLandmarksDot(faceLandmarks){
|
||||
Object.keys(landmarkFeatures).forEach(function(featureLabel){
|
||||
if( parameters[featureLabel+'Visible'] === false ) return
|
||||
displayFaceLandmarksFeature(faceLandmarks, featureLabel)
|
||||
})
|
||||
}
|
||||
function displayFaceLandmarksFeature(faceLandmarks, featureLabel){
|
||||
var feature = landmarkFeatures[featureLabel]
|
||||
|
||||
// draw dots
|
||||
context.fillStyle = feature.fillStyle
|
||||
for(var i = feature.first; i <= feature.last; i++){
|
||||
var xy = faceLandmarks[i]
|
||||
context.beginPath();
|
||||
context.arc(xy[0],xy[1],1,0,2*Math.PI);
|
||||
context.fill();
|
||||
}
|
||||
|
||||
// draw lines
|
||||
var feature = landmarkFeatures[featureLabel]
|
||||
context.strokeStyle = feature.fillStyle
|
||||
context.beginPath();
|
||||
for(var i = feature.first; i <= feature.last; i++){
|
||||
var x = faceLandmarks[i][0]
|
||||
var y = faceLandmarks[i][1]
|
||||
if( i === 0 ){
|
||||
context.moveTo(x, y)
|
||||
}else{
|
||||
context.lineTo(x, y)
|
||||
}
|
||||
}
|
||||
if( feature.closed === true ){
|
||||
var x = faceLandmarks[feature.first][0]
|
||||
var y = faceLandmarks[feature.first][1]
|
||||
context.lineTo(x, y)
|
||||
}
|
||||
|
||||
context.stroke();
|
||||
|
||||
}
|
||||
</script></body>
|
|
@ -0,0 +1,67 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - face with camera</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
|
||||
<style>
|
||||
video, canvas {
|
||||
margin-left: 230px;
|
||||
margin-top: 120px;
|
||||
position: absolute;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - get user's webcam and detect faces</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<video id="video" width="320" height="240" preload autoplay loop muted></video>
|
||||
<canvas id="canvas" width="320" height="240"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var video = document.getElementById('video');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var tracker = new tracking.ObjectTracker('face');
|
||||
tracker.setInitialScale(4);
|
||||
tracker.setStepSize(2);
|
||||
tracker.setEdgesDensity(0.1);
|
||||
|
||||
tracking.track('#video', tracker, { camera: true });
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
|
||||
event.data.forEach(function(rect) {
|
||||
context.strokeStyle = '#a64ceb';
|
||||
context.strokeRect(rect.x, rect.y, rect.width, rect.height);
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11);
|
||||
context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22);
|
||||
});
|
||||
});
|
||||
|
||||
var gui = new dat.GUI();
|
||||
gui.add(tracker, 'edgesDensity', 0.1, 0.5).step(0.01);
|
||||
gui.add(tracker, 'initialScale', 1.0, 10.0).step(0.1);
|
||||
gui.add(tracker, 'stepSize', 1, 5).step(0.1);
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,89 @@
|
|||
<!doctype html>
|
||||
<html lang="en">
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<meta name="viewport" content="width=device-width, user-scalable=no, minimum-scale=1.0, maximum-scale=1.0">
|
||||
<title>tracking.js - face tracking fish tank</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
<script src="../../threejs/build/three.min.js"></script>
|
||||
<script src="assets/fish_tank/FishTankRenderer.js"></script>
|
||||
|
||||
<style>
|
||||
body {
|
||||
overflow: hidden;
|
||||
}
|
||||
|
||||
#video, #canvas {
|
||||
bottom: 0;
|
||||
position: absolute;
|
||||
z-index: 100;
|
||||
}
|
||||
|
||||
#viewport {
|
||||
padding-top: 40px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - get user's webcam and detect faces to control the scene</p>
|
||||
</div>
|
||||
|
||||
<div id="viewport">
|
||||
<video id="video" width="320" height="240" preload autoplay loop muted></video>
|
||||
<canvas id="canvas" width="320" height="240"></canvas>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
var viewport = document.getElementById('viewport');
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var fishTankRenderer = new FishTankRenderer();
|
||||
fishTankRenderer.init(viewport);
|
||||
|
||||
var faceX = 0;
|
||||
var faceY = 0;
|
||||
|
||||
var tracker = new tracking.ObjectTracker('face');
|
||||
tracker.setInitialScale(4);
|
||||
tracker.setStepSize(2);
|
||||
|
||||
tracking.track('#video', tracker, { camera: true });
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
var maxRectArea = 0;
|
||||
var maxRect;
|
||||
|
||||
event.data.forEach(function(rect) {
|
||||
if (rect.width * rect.height > maxRectArea){
|
||||
maxRectArea = rect.width * rect.height;
|
||||
maxRect = rect;
|
||||
}
|
||||
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
context.strokeStyle = 'magenta';
|
||||
context.strokeRect(rect.x, rect.y, rect.width, rect.height);
|
||||
context.font = '11px Helvetica';
|
||||
context.fillStyle = "#fff";
|
||||
context.fillText('x: ' + rect.x + 'px', rect.x + rect.width + 5, rect.y + 11);
|
||||
context.fillText('y: ' + rect.y + 'px', rect.x + rect.width + 5, rect.y + 22);
|
||||
});
|
||||
|
||||
if(maxRectArea > 0) {
|
||||
var rectCenterX = maxRect.x + (maxRect.width/2);
|
||||
var rectCenterY = maxRect.y + (maxRect.height/2);
|
||||
faceX = (rectCenterX - 160) * (window.innerWidth/320) * 50;
|
||||
faceY = (rectCenterY - 120) * (window.innerHeight/240) * 50;
|
||||
}
|
||||
|
||||
fishTankRenderer.render(faceX, faceY);
|
||||
});
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,68 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - face hello world</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
<script src="../build/data/eye-min.js"></script>
|
||||
<script src="../build/data/mouth-min.js"></script>
|
||||
|
||||
<style>
|
||||
.rect {
|
||||
border: 2px solid #a64ceb;
|
||||
left: -1000px;
|
||||
position: absolute;
|
||||
top: -1000px;
|
||||
}
|
||||
|
||||
#img {
|
||||
position: absolute;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
margin: -173px 0 0 -300px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - detect faces, eyes and mouths in a image</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<img id="img" src="assets/faces.jpg" />
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var img = document.getElementById('img');
|
||||
|
||||
var tracker = new tracking.ObjectTracker(['face', 'eye', 'mouth']);
|
||||
tracker.setStepSize(1.7);
|
||||
|
||||
tracking.track('#img', tracker);
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
event.data.forEach(function(rect) {
|
||||
window.plot(rect.x, rect.y, rect.width, rect.height);
|
||||
});
|
||||
});
|
||||
|
||||
window.plot = function(x, y, w, h) {
|
||||
var rect = document.createElement('div');
|
||||
document.querySelector('.demo-container').appendChild(rect);
|
||||
rect.classList.add('rect');
|
||||
rect.style.width = w + 'px';
|
||||
rect.style.height = h + 'px';
|
||||
rect.style.left = (img.offsetLeft + x) + 'px';
|
||||
rect.style.top = (img.offsetTop + y) + 'px';
|
||||
};
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,123 @@
|
|||
<!doctype html>
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - tag friends</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../build/data/face-min.js"></script>
|
||||
|
||||
<style>
|
||||
#photo:hover .rect {
|
||||
opacity: .75;
|
||||
transition: opacity .75s ease-out;
|
||||
}
|
||||
|
||||
.rect:hover * {
|
||||
opacity: 1;
|
||||
}
|
||||
|
||||
.rect {
|
||||
border-radius: 2px;
|
||||
border: 3px solid white;
|
||||
box-shadow: 0 16px 28px 0 rgba(0, 0, 0, 0.3);
|
||||
cursor: pointer;
|
||||
left: -1000px;
|
||||
opacity: 0;
|
||||
position: absolute;
|
||||
top: -1000px;
|
||||
}
|
||||
|
||||
.arrow {
|
||||
border-bottom: 10px solid white;
|
||||
border-left: 10px solid transparent;
|
||||
border-right: 10px solid transparent;
|
||||
height: 0;
|
||||
width: 0;
|
||||
position: absolute;
|
||||
left: 50%;
|
||||
margin-left: -5px;
|
||||
bottom: -12px;
|
||||
opacity: 0;
|
||||
}
|
||||
|
||||
input {
|
||||
border: 0px;
|
||||
bottom: -42px;
|
||||
color: #a64ceb;
|
||||
font-size: 15px;
|
||||
height: 30px;
|
||||
left: 50%;
|
||||
margin-left: -90px;
|
||||
opacity: 0;
|
||||
outline: none;
|
||||
position: absolute;
|
||||
text-align: center;
|
||||
width: 180px;
|
||||
transition: opacity .35s ease-out;
|
||||
}
|
||||
|
||||
#img {
|
||||
position: absolute;
|
||||
top: 50%;
|
||||
left: 50%;
|
||||
margin: -173px 0 0 -300px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - hover image to see all faces detected</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<span id="photo"><img id="img" src="assets/faces.jpg" /></span>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var img = document.getElementById('img');
|
||||
|
||||
var tracker = new tracking.ObjectTracker('face');
|
||||
|
||||
tracking.track(img, tracker);
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
event.data.forEach(function(rect) {
|
||||
plotRectangle(rect.x, rect.y, rect.width, rect.height);
|
||||
});
|
||||
});
|
||||
|
||||
var friends = [ 'Thomas Middleditch', 'Martin Starr', 'Zach Woods' ];
|
||||
|
||||
var plotRectangle = function(x, y, w, h) {
|
||||
var rect = document.createElement('div');
|
||||
var arrow = document.createElement('div');
|
||||
var input = document.createElement('input');
|
||||
|
||||
input.value = friends.pop();
|
||||
|
||||
rect.onclick = function name() {
|
||||
input.select();
|
||||
};
|
||||
|
||||
arrow.classList.add('arrow');
|
||||
rect.classList.add('rect');
|
||||
|
||||
rect.appendChild(input);
|
||||
rect.appendChild(arrow);
|
||||
document.getElementById('photo').appendChild(rect);
|
||||
|
||||
rect.style.width = w + 'px';
|
||||
rect.style.height = h + 'px';
|
||||
rect.style.left = (img.offsetLeft + x) + 'px';
|
||||
rect.style.top = (img.offsetTop + y) + 'px';
|
||||
};
|
||||
};
|
||||
</script>
|
||||
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,73 @@
|
|||
<!doctype html>
|
||||
|
||||
<html>
|
||||
<head>
|
||||
<meta charset="utf-8">
|
||||
<title>tracking.js - feature detection</title>
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
|
||||
<style>
|
||||
.demo-container {
|
||||
background: #131112;
|
||||
}
|
||||
#image {
|
||||
position: absolute;
|
||||
left: -1000px;
|
||||
top: -1000px;
|
||||
}
|
||||
#canvas {
|
||||
position: absolute;
|
||||
left: 50%;
|
||||
top: 50%;
|
||||
margin: -200px 0 0 -200px;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - detect feature points on a image</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<img id="image" src="assets/fast.png" />
|
||||
<canvas id="canvas" width="400" height="400"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
window.onload = function() {
|
||||
var width = 400;
|
||||
var height = 400;
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var image = document.getElementById('image');
|
||||
|
||||
window.fastThreshold = 10;
|
||||
|
||||
var doFindFeatures = function() {
|
||||
tracking.Fast.THRESHOLD = window.fastThreshold;
|
||||
context.drawImage(image, 0, 0, width, height);
|
||||
|
||||
var imageData = context.getImageData(0, 0, width, height);
|
||||
var gray = tracking.Image.grayscale(imageData.data, width, height);
|
||||
var corners = tracking.Fast.findCorners(gray, width, height);
|
||||
|
||||
for (var i = 0; i < corners.length; i += 2) {
|
||||
context.fillStyle = '#f00';
|
||||
context.fillRect(corners[i], corners[i + 1], 3, 3);
|
||||
}
|
||||
};
|
||||
|
||||
doFindFeatures();
|
||||
|
||||
var gui = new dat.GUI();
|
||||
gui.add(window, 'fastThreshold', 0, 100).onChange(doFindFeatures);
|
||||
}
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,85 @@
|
|||
<!doctype html>
|
||||
|
||||
<html>
|
||||
<head>
|
||||
<title>tracking.js - feature detector with camera</title>
|
||||
|
||||
<meta charset="utf-8">
|
||||
<link rel="stylesheet" href="assets/demo.css">
|
||||
|
||||
<script src="../build/tracking-min.js"></script>
|
||||
<script src="../node_modules/dat.gui/build/dat.gui.min.js"></script>
|
||||
<script src="assets/stats.min.js"></script>
|
||||
|
||||
<style>
|
||||
#video {
|
||||
position: absolute;
|
||||
top: -1000px;
|
||||
}
|
||||
|
||||
#canvas {
|
||||
left: 50%;
|
||||
top: 50%;
|
||||
margin-left: -200px;
|
||||
margin-top: -150px;
|
||||
position: absolute;
|
||||
}
|
||||
</style>
|
||||
</head>
|
||||
<body>
|
||||
<div class="demo-title">
|
||||
<p><a href="http://trackingjs.com" target="_parent">tracking.js</a> - display detected features</p>
|
||||
</div>
|
||||
|
||||
<div class="demo-frame">
|
||||
<div class="demo-container">
|
||||
<video id="video" width="400" height="300" preload autoplay loop muted></video>
|
||||
<canvas id="canvas" width="400" height="300"></canvas>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<script>
|
||||
var canvas = document.getElementById('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
|
||||
var FastTracker = function() {
|
||||
FastTracker.base(this, 'constructor');
|
||||
};
|
||||
tracking.inherits(FastTracker, tracking.Tracker);
|
||||
|
||||
tracking.Fast.THRESHOLD = 2;
|
||||
FastTracker.prototype.threshold = tracking.Fast.THRESHOLD;
|
||||
|
||||
FastTracker.prototype.track = function(pixels, width, height) {
|
||||
stats.begin();
|
||||
var gray = tracking.Image.grayscale(pixels, width, height);
|
||||
var corners = tracking.Fast.findCorners(gray, width, height);
|
||||
stats.end();
|
||||
|
||||
this.emit('track', {
|
||||
data: corners
|
||||
});
|
||||
};
|
||||
|
||||
var tracker = new FastTracker();
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
context.clearRect(0, 0, canvas.width, canvas.height);
|
||||
var corners = event.data;
|
||||
for (var i = 0; i < corners.length; i += 2) {
|
||||
context.fillStyle = '#f00';
|
||||
context.fillRect(corners[i], corners[i + 1], 2, 2);
|
||||
}
|
||||
});
|
||||
|
||||
tracking.track('#video', tracker, { camera: true });
|
||||
|
||||
// GUI Controllers
|
||||
var gui = new dat.GUI();
|
||||
|
||||
gui.add(tracker, 'threshold', 1, 100).onChange(function(value) {
|
||||
tracking.Fast.THRESHOLD = value;
|
||||
});
|
||||
</script>
|
||||
</body>
|
||||
</html>
|
|
@ -0,0 +1,118 @@
|
|||
'use strict';
|
||||
var gulp = require('gulp');
|
||||
var concat = require('gulp-concat');
|
||||
var header = require('gulp-header');
|
||||
var jsdoc = require('gulp-jsdoc');
|
||||
var jshint = require('gulp-jshint');
|
||||
var nodeunit = require('gulp-nodeunit');
|
||||
var pkg = require('./package.json');
|
||||
var rename = require('gulp-rename');
|
||||
var rimraf = require('gulp-rimraf');
|
||||
var stylish = require('jshint-stylish');
|
||||
var uglify = require('gulp-uglify');
|
||||
var esformatter = require('gulp-esformatter');
|
||||
var runSequence = require('run-sequence');
|
||||
|
||||
gulp.task('all', ['clean'], function() {
|
||||
return runSequence(['build', 'build-data']);
|
||||
});
|
||||
|
||||
gulp.task('clean', function() {
|
||||
return gulp.src('build').pipe(rimraf());
|
||||
});
|
||||
|
||||
gulp.task('build', function() {
|
||||
var files = [
|
||||
'src/tracking.js',
|
||||
'src/utils/EventEmitter.js',
|
||||
'src/utils/Canvas.js',
|
||||
'src/utils/DisjointSet.js',
|
||||
'src/utils/Image.js',
|
||||
'src/detection/ViolaJones.js',
|
||||
'src/features/Brief.js',
|
||||
'src/features/Fast.js',
|
||||
'src/math/Math.js',
|
||||
'src/math/Matrix.js',
|
||||
'src/pose/EPnP.js',
|
||||
'src/trackers/Tracker.js',
|
||||
'src/trackers/TrackerTask.js',
|
||||
'src/trackers/ColorTracker.js',
|
||||
'src/trackers/ObjectTracker.js',
|
||||
'src/trackers/LandmarksTracker.js',
|
||||
'src/alignment/Regressor.js',
|
||||
'src/alignment/LBF.js'
|
||||
];
|
||||
|
||||
return gulp.src(files)
|
||||
.pipe(concat('tracking.js'))
|
||||
.pipe(banner())
|
||||
.pipe(gulp.dest('build'))
|
||||
.pipe(uglify())
|
||||
.pipe(rename({
|
||||
suffix: '-min'
|
||||
}))
|
||||
.pipe(banner())
|
||||
.pipe(gulp.dest('build'));
|
||||
});
|
||||
|
||||
gulp.task('build-data', function() {
|
||||
return gulp.src('src/detection/training/haar/**.js')
|
||||
.pipe(banner())
|
||||
.pipe(gulp.dest('build/data'))
|
||||
.pipe(rename({
|
||||
suffix: '-min'
|
||||
}))
|
||||
.pipe(uglify())
|
||||
.pipe(banner())
|
||||
.pipe(gulp.dest('build/data'));
|
||||
});
|
||||
|
||||
gulp.task('docs', function() {
|
||||
return gulp.src(['src/**/*.js', 'README.md'])
|
||||
.pipe(jsdoc('docs'));
|
||||
});
|
||||
|
||||
gulp.task('format', function() {
|
||||
return gulp.src(['src/**/*.js', '!src/detection/training/**/*.js'])
|
||||
.pipe(esformatter())
|
||||
.pipe(gulp.dest('src'));
|
||||
});
|
||||
|
||||
gulp.task('lint', function() {
|
||||
return gulp.src('src/**/**.js')
|
||||
.pipe(jshint())
|
||||
.pipe(jshint.reporter(stylish));
|
||||
});
|
||||
|
||||
gulp.task('test', function(cb) {
|
||||
gulp.src('test/*.js')
|
||||
.pipe(nodeunit())
|
||||
.on('end', cb);
|
||||
});
|
||||
|
||||
gulp.task('test-watch', function() {
|
||||
return gulp.watch(['src/**/*.js', 'test/**/*.js'], ['test']);
|
||||
});
|
||||
|
||||
gulp.task('watch', function() {
|
||||
gulp.watch('src/**/*.js', ['build']);
|
||||
gulp.watch('src/data/*.js', ['build-data']);
|
||||
});
|
||||
|
||||
// Private helpers
|
||||
// ===============
|
||||
|
||||
function banner() {
|
||||
var stamp = [
|
||||
'/**',
|
||||
' * <%= pkg.name %> - <%= pkg.description %>',
|
||||
' * @author <%= pkg.author.name %> <<%= pkg.author.email %>>',
|
||||
' * @version v<%= pkg.version %>',
|
||||
' * @link <%= pkg.homepage %>',
|
||||
' * @license <%= pkg.license %>',
|
||||
' */',
|
||||
''
|
||||
].join('\n');
|
||||
|
||||
return header(stamp, { pkg: pkg });
|
||||
}
|
|
@ -0,0 +1,45 @@
|
|||
{
|
||||
"name": "tracking",
|
||||
"version": "1.1.3",
|
||||
"main": "build/tracking.js",
|
||||
"description": "A modern approach for Computer Vision on the web.",
|
||||
"homepage": "http://trackingjs.com",
|
||||
"keywords": [
|
||||
"tracking",
|
||||
"trackingjs",
|
||||
"webrtc"
|
||||
],
|
||||
"author": {
|
||||
"name": "Eduardo Lundgren",
|
||||
"email": "edu@rdo.io",
|
||||
"web": "http://eduardo.io",
|
||||
"twitter": "eduardolundgren"
|
||||
},
|
||||
"repository": {
|
||||
"type": "git",
|
||||
"url": "git@github.com:eduardolundgren/tracking.js.git"
|
||||
},
|
||||
"scripts": {
|
||||
"test": "gulp test",
|
||||
"build": "gulp build"
|
||||
},
|
||||
"license": "BSD",
|
||||
"devDependencies": {
|
||||
"gulp": "^3.9.0",
|
||||
"gulp-concat": "^2.6.0",
|
||||
"gulp-esformatter": "^5.0.0",
|
||||
"gulp-header": "^1.7.1",
|
||||
"gulp-jsdoc": "^0.1.5",
|
||||
"gulp-jshint": "^2.0.0",
|
||||
"gulp-nodeunit": "0.0.5",
|
||||
"gulp-rename": "^1.2.2",
|
||||
"gulp-rimraf": "^0.2.0",
|
||||
"gulp-uglify": "^1.5.1",
|
||||
"jshint": "^2.8.0",
|
||||
"jshint-stylish": "^2.1.0",
|
||||
"nodeunit": "^0.9.1",
|
||||
"png-js": "^0.1.1",
|
||||
"run-sequence": "^1.1.5",
|
||||
"dat.gui": "^0.6.1"
|
||||
}
|
||||
}
|
|
@ -0,0 +1,222 @@
|
|||
(function() {
|
||||
/**
|
||||
* Face Alignment via Regressing Local Binary Features (LBF)
|
||||
* This approach has two components: a set of local binary features and
|
||||
* a locality principle for learning those features.
|
||||
* The locality principle is used to guide the learning of a set of highly
|
||||
* discriminative local binary features for each landmark independently.
|
||||
* The obtained local binary features are used to learn a linear regression
|
||||
* that later will be used to guide the landmarks in the alignment phase.
|
||||
*
|
||||
* @authors: VoxarLabs Team (http://cin.ufpe.br/~voxarlabs)
|
||||
* Lucas Figueiredo <lsf@cin.ufpe.br>, Thiago Menezes <tmc2@cin.ufpe.br>,
|
||||
* Thiago Domingues <tald@cin.ufpe.br>, Rafael Roberto <rar3@cin.ufpe.br>,
|
||||
* Thulio Araujo <tlsa@cin.ufpe.br>, Joao Victor <jvfl@cin.ufpe.br>,
|
||||
* Tomer Simis <tls@cin.ufpe.br>)
|
||||
*/
|
||||
|
||||
/**
|
||||
* Holds the maximum number of stages that will be used in the alignment algorithm.
|
||||
* Each stage contains a different set of random forests and retrieves the binary
|
||||
* code from a more "specialized" (i.e. smaller) region around the landmarks.
|
||||
* @type {number}
|
||||
* @static
|
||||
*/
|
||||
tracking.LBF.maxNumStages = 4;
|
||||
|
||||
/**
|
||||
* Holds the regressor that will be responsible for extracting the local features from
|
||||
* the image and guide the landmarks using the training data.
|
||||
* @type {object}
|
||||
* @protected
|
||||
* @static
|
||||
*/
|
||||
tracking.LBF.regressor_ = null;
|
||||
|
||||
/**
|
||||
* Generates a set of landmarks for a set of faces
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {array} faces The list of faces detected in the image
|
||||
* @return {array} The aligned landmarks, each set of landmarks corresponding
|
||||
* to a specific face.
|
||||
* @static
|
||||
*/
|
||||
tracking.LBF.align = function(pixels, width, height, faces){
|
||||
|
||||
if(tracking.LBF.regressor_ == null){
|
||||
tracking.LBF.regressor_ = new tracking.LBF.Regressor(
|
||||
tracking.LBF.maxNumStages
|
||||
);
|
||||
}
|
||||
// NOTE: is this thesholding suitable ? if it is on image, why no skin-color filter ? and a adaptative threshold
|
||||
pixels = tracking.Image.grayscale(pixels, width, height, false);
|
||||
|
||||
pixels = tracking.Image.equalizeHist(pixels, width, height);
|
||||
|
||||
var shapes = new Array(faces.length);
|
||||
|
||||
for(var i in faces){
|
||||
|
||||
faces[i].height = faces[i].width;
|
||||
|
||||
var boundingBox = {};
|
||||
boundingBox.startX = faces[i].x;
|
||||
boundingBox.startY = faces[i].y;
|
||||
boundingBox.width = faces[i].width;
|
||||
boundingBox.height = faces[i].height;
|
||||
|
||||
shapes[i] = tracking.LBF.regressor_.predict(pixels, width, height, boundingBox);
|
||||
}
|
||||
|
||||
return shapes;
|
||||
}
|
||||
|
||||
/**
|
||||
* Unprojects the landmarks shape from the bounding box.
|
||||
* @param {matrix} shape The landmarks shape.
|
||||
* @param {matrix} boudingBox The bounding box.
|
||||
* @return {matrix} The landmarks shape projected into the bounding box.
|
||||
* @static
|
||||
* @protected
|
||||
*/
|
||||
tracking.LBF.unprojectShapeToBoundingBox_ = function(shape, boundingBox){
|
||||
var temp = new Array(shape.length);
|
||||
for(var i=0; i < shape.length; i++){
|
||||
temp[i] = [
|
||||
(shape[i][0] - boundingBox.startX) / boundingBox.width,
|
||||
(shape[i][1] - boundingBox.startY) / boundingBox.height
|
||||
];
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Projects the landmarks shape into the bounding box. The landmarks shape has
|
||||
* normalized coordinates, so it is necessary to map these coordinates into
|
||||
* the bounding box coordinates.
|
||||
* @param {matrix} shape The landmarks shape.
|
||||
* @param {matrix} boudingBox The bounding box.
|
||||
* @return {matrix} The landmarks shape.
|
||||
* @static
|
||||
* @protected
|
||||
*/
|
||||
tracking.LBF.projectShapeToBoundingBox_ = function(shape, boundingBox){
|
||||
var temp = new Array(shape.length);
|
||||
for(var i=0; i < shape.length; i++){
|
||||
temp[i] = [
|
||||
shape[i][0] * boundingBox.width + boundingBox.startX,
|
||||
shape[i][1] * boundingBox.height + boundingBox.startY
|
||||
];
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the rotation and scale necessary to transform shape1 into shape2.
|
||||
* @param {matrix} shape1 The shape to be transformed.
|
||||
* @param {matrix} shape2 The shape to be transformed in.
|
||||
* @return {[matrix, scalar]} The rotation matrix and scale that applied to shape1
|
||||
* results in shape2.
|
||||
* @static
|
||||
* @protected
|
||||
*/
|
||||
tracking.LBF.similarityTransform_ = function(shape1, shape2){
|
||||
|
||||
var center1 = [0,0];
|
||||
var center2 = [0,0];
|
||||
for (var i = 0; i < shape1.length; i++) {
|
||||
center1[0] += shape1[i][0];
|
||||
center1[1] += shape1[i][1];
|
||||
center2[0] += shape2[i][0];
|
||||
center2[1] += shape2[i][1];
|
||||
}
|
||||
center1[0] /= shape1.length;
|
||||
center1[1] /= shape1.length;
|
||||
center2[0] /= shape2.length;
|
||||
center2[1] /= shape2.length;
|
||||
|
||||
var temp1 = tracking.Matrix.clone(shape1);
|
||||
var temp2 = tracking.Matrix.clone(shape2);
|
||||
for(var i=0; i < shape1.length; i++){
|
||||
temp1[i][0] -= center1[0];
|
||||
temp1[i][1] -= center1[1];
|
||||
temp2[i][0] -= center2[0];
|
||||
temp2[i][1] -= center2[1];
|
||||
}
|
||||
|
||||
var covariance1, covariance2;
|
||||
var mean1, mean2;
|
||||
|
||||
var t = tracking.Matrix.calcCovarMatrix(temp1);
|
||||
covariance1 = t[0];
|
||||
mean1 = t[1];
|
||||
|
||||
t = tracking.Matrix.calcCovarMatrix(temp2);
|
||||
covariance2 = t[0];
|
||||
mean2 = t[1];
|
||||
|
||||
var s1 = Math.sqrt(tracking.Matrix.norm(covariance1));
|
||||
var s2 = Math.sqrt(tracking.Matrix.norm(covariance2));
|
||||
|
||||
var scale = s1/s2;
|
||||
temp1 = tracking.Matrix.mulScalar(1.0/s1, temp1);
|
||||
temp2 = tracking.Matrix.mulScalar(1.0/s2, temp2);
|
||||
|
||||
var num = 0, den = 0;
|
||||
for (var i = 0; i < shape1.length; i++) {
|
||||
num = num + temp1[i][1] * temp2[i][0] - temp1[i][0] * temp2[i][1];
|
||||
den = den + temp1[i][0] * temp2[i][0] + temp1[i][1] * temp2[i][1];
|
||||
}
|
||||
|
||||
var norm = Math.sqrt(num*num + den*den);
|
||||
var sin_theta = num/norm;
|
||||
var cos_theta = den/norm;
|
||||
var rotation = [
|
||||
[cos_theta, -sin_theta],
|
||||
[sin_theta, cos_theta]
|
||||
];
|
||||
|
||||
return [rotation, scale];
|
||||
}
|
||||
|
||||
/**
|
||||
* LBF Random Forest data structure.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.LBF.RandomForest = function(forestIndex){
|
||||
this.maxNumTrees = tracking.LBF.RegressorData[forestIndex].max_numtrees;
|
||||
this.landmarkNum = tracking.LBF.RegressorData[forestIndex].num_landmark;
|
||||
this.maxDepth = tracking.LBF.RegressorData[forestIndex].max_depth;
|
||||
this.stages = tracking.LBF.RegressorData[forestIndex].stages;
|
||||
|
||||
this.rfs = new Array(this.landmarkNum);
|
||||
for(var i=0; i < this.landmarkNum; i++){
|
||||
this.rfs[i] = new Array(this.maxNumTrees);
|
||||
for(var j=0; j < this.maxNumTrees; j++){
|
||||
this.rfs[i][j] = new tracking.LBF.Tree(forestIndex, i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* LBF Tree data structure.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.LBF.Tree = function(forestIndex, landmarkIndex, treeIndex){
|
||||
var data = tracking.LBF.RegressorData[forestIndex].landmarks[landmarkIndex][treeIndex];
|
||||
this.maxDepth = data.max_depth;
|
||||
this.maxNumNodes = data.max_numnodes;
|
||||
this.nodes = data.nodes;
|
||||
this.landmarkID = data.landmark_id;
|
||||
this.numLeafnodes = data.num_leafnodes;
|
||||
this.numNodes = data.num_nodes;
|
||||
this.maxNumFeats = data.max_numfeats;
|
||||
this.maxRadioRadius = data.max_radio_radius;
|
||||
this.leafnodes = data.id_leafnodes;
|
||||
}
|
||||
|
||||
}());
|
|
@ -0,0 +1,230 @@
|
|||
(function() {
|
||||
|
||||
tracking.LBF = {};
|
||||
|
||||
/**
|
||||
* LBF Regressor utility.
|
||||
* @constructor
|
||||
*/
|
||||
tracking.LBF.Regressor = function(maxNumStages){
|
||||
this.maxNumStages = maxNumStages;
|
||||
|
||||
this.rfs = new Array(maxNumStages);
|
||||
this.models = new Array(maxNumStages);
|
||||
for(var i=0; i < maxNumStages; i++){
|
||||
this.rfs[i] = new tracking.LBF.RandomForest(i);
|
||||
this.models[i] = tracking.LBF.RegressorData[i].models;
|
||||
}
|
||||
|
||||
this.meanShape = tracking.LBF.LandmarksData;
|
||||
}
|
||||
|
||||
/**
|
||||
* Predicts the position of the landmarks based on the bounding box of the face.
|
||||
* @param {pixels} pixels The grayscale pixels in a linear array.
|
||||
* @param {number} width Width of the image.
|
||||
* @param {number} height Height of the image.
|
||||
* @param {object} boudingBox Bounding box of the face to be aligned.
|
||||
* @return {matrix} A matrix with each landmark position in a row [x,y].
|
||||
*/
|
||||
tracking.LBF.Regressor.prototype.predict = function(pixels, width, height, boundingBox) {
|
||||
|
||||
var images = [];
|
||||
var currentShapes = [];
|
||||
var boundingBoxes = [];
|
||||
|
||||
var meanShapeClone = tracking.Matrix.clone(this.meanShape);
|
||||
|
||||
images.push({
|
||||
'data': pixels,
|
||||
'width': width,
|
||||
'height': height
|
||||
});
|
||||
boundingBoxes.push(boundingBox);
|
||||
|
||||
currentShapes.push(tracking.LBF.projectShapeToBoundingBox_(meanShapeClone, boundingBox));
|
||||
|
||||
for(var stage = 0; stage < this.maxNumStages; stage++){
|
||||
var binaryFeatures = tracking.LBF.Regressor.deriveBinaryFeat(this.rfs[stage], images, currentShapes, boundingBoxes, meanShapeClone);
|
||||
this.applyGlobalPrediction(binaryFeatures, this.models[stage], currentShapes, boundingBoxes);
|
||||
}
|
||||
|
||||
return currentShapes[0];
|
||||
};
|
||||
|
||||
/**
|
||||
* Multiplies the binary features of the landmarks with the regression matrix
|
||||
* to obtain the displacement for each landmark. Then applies this displacement
|
||||
* into the landmarks shape.
|
||||
* @param {object} binaryFeatures The binary features for the landmarks.
|
||||
* @param {object} models The regressor models.
|
||||
* @param {matrix} currentShapes The landmarks shapes.
|
||||
* @param {array} boudingBoxes The bounding boxes of the faces.
|
||||
*/
|
||||
tracking.LBF.Regressor.prototype.applyGlobalPrediction = function(binaryFeatures, models, currentShapes,
|
||||
boundingBoxes){
|
||||
|
||||
var residual = currentShapes[0].length * 2;
|
||||
|
||||
var rotation = [];
|
||||
var deltashape = new Array(residual/2);
|
||||
for(var i=0; i < residual/2; i++){
|
||||
deltashape[i] = [0.0, 0.0];
|
||||
}
|
||||
|
||||
for(var i=0; i < currentShapes.length; i++){
|
||||
for(var j=0; j < residual; j++){
|
||||
var tmp = 0;
|
||||
for(var lx=0, idx=0; (idx = binaryFeatures[i][lx].index) != -1; lx++){
|
||||
if(idx <= models[j].nr_feature){
|
||||
tmp += models[j].data[(idx - 1)] * binaryFeatures[i][lx].value;
|
||||
}
|
||||
}
|
||||
if(j < residual/2){
|
||||
deltashape[j][0] = tmp;
|
||||
}else{
|
||||
deltashape[j - residual/2][1] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
var res = tracking.LBF.similarityTransform_(tracking.LBF.unprojectShapeToBoundingBox_(currentShapes[i], boundingBoxes[i]), this.meanShape);
|
||||
var rotation = tracking.Matrix.transpose(res[0]);
|
||||
|
||||
var s = tracking.LBF.unprojectShapeToBoundingBox_(currentShapes[i], boundingBoxes[i]);
|
||||
s = tracking.Matrix.add(s, deltashape);
|
||||
|
||||
currentShapes[i] = tracking.LBF.projectShapeToBoundingBox_(s, boundingBoxes[i]);
|
||||
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Derives the binary features from the image for each landmark.
|
||||
* @param {object} forest The random forest to search for the best binary feature match.
|
||||
* @param {array} images The images with pixels in a grayscale linear array.
|
||||
* @param {array} currentShapes The current landmarks shape.
|
||||
* @param {array} boudingBoxes The bounding boxes of the faces.
|
||||
* @param {matrix} meanShape The mean shape of the current landmarks set.
|
||||
* @return {array} The binary features extracted from the image and matched with the
|
||||
* training data.
|
||||
* @static
|
||||
*/
|
||||
tracking.LBF.Regressor.deriveBinaryFeat = function(forest, images, currentShapes, boundingBoxes, meanShape){
|
||||
|
||||
var binaryFeatures = new Array(images.length);
|
||||
for(var i=0; i < images.length; i++){
|
||||
var t = forest.maxNumTrees * forest.landmarkNum + 1;
|
||||
binaryFeatures[i] = new Array(t);
|
||||
for(var j=0; j < t; j++){
|
||||
binaryFeatures[i][j] = {};
|
||||
}
|
||||
}
|
||||
|
||||
var leafnodesPerTree = 1 << (forest.maxDepth - 1);
|
||||
|
||||
for(var i=0; i < images.length; i++){
|
||||
|
||||
var projectedShape = tracking.LBF.unprojectShapeToBoundingBox_(currentShapes[i], boundingBoxes[i]);
|
||||
var transform = tracking.LBF.similarityTransform_(projectedShape, meanShape);
|
||||
|
||||
for(var j=0; j < forest.landmarkNum; j++){
|
||||
for(var k=0; k < forest.maxNumTrees; k++){
|
||||
|
||||
var binaryCode = tracking.LBF.Regressor.getCodeFromTree(forest.rfs[j][k], images[i],
|
||||
currentShapes[i], boundingBoxes[i], transform[0], transform[1]);
|
||||
|
||||
var index = j*forest.maxNumTrees + k;
|
||||
binaryFeatures[i][index].index = leafnodesPerTree * index + binaryCode;
|
||||
binaryFeatures[i][index].value = 1;
|
||||
|
||||
}
|
||||
}
|
||||
binaryFeatures[i][forest.landmarkNum * forest.maxNumTrees].index = -1;
|
||||
binaryFeatures[i][forest.landmarkNum * forest.maxNumTrees].value = -1;
|
||||
}
|
||||
return binaryFeatures;
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the binary code for a specific tree in a random forest. For each landmark,
|
||||
* the position from two pre-defined points are recovered from the training data
|
||||
* and then the intensity of the pixels corresponding to these points is extracted
|
||||
* from the image and used to traverse the trees in the random forest. At the end,
|
||||
* the ending nodes will be represented by 1, and the remaining nodes by 0.
|
||||
*
|
||||
* +--------------------------- Random Forest -----------------------------+
|
||||
* | Ø = Ending leaf |
|
||||
* | |
|
||||
* | O O O O O |
|
||||
* | / \ / \ / \ / \ / \ |
|
||||
* | O O O O O O O O O O |
|
||||
* | / \ / \ / \ / \ / \ / \ / \ / \ / \ / \ |
|
||||
* | Ø O O O O O Ø O O Ø O O O O Ø O O O O Ø |
|
||||
* | 1 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 1 |
|
||||
* +-----------------------------------------------------------------------+
|
||||
* Final binary code for this landmark: 10000010010000100001
|
||||
*
|
||||
* @param {object} forest The tree to be analyzed.
|
||||
* @param {array} image The image with pixels in a grayscale linear array.
|
||||
* @param {matrix} shape The current landmarks shape.
|
||||
* @param {object} boudingBoxes The bounding box of the face.
|
||||
* @param {matrix} rotation The rotation matrix used to transform the projected landmarks
|
||||
* into the mean shape.
|
||||
* @param {number} scale The scale factor used to transform the projected landmarks
|
||||
* into the mean shape.
|
||||
* @return {number} The binary code extracted from the tree.
|
||||
* @static
|
||||
*/
|
||||
tracking.LBF.Regressor.getCodeFromTree = function(tree, image, shape, boundingBox, rotation, scale){
|
||||
var current = 0;
|
||||
var bincode = 0;
|
||||
|
||||
while(true){
|
||||
|
||||
var x1 = Math.cos(tree.nodes[current].feats[0]) * tree.nodes[current].feats[2] * tree.maxRadioRadius * boundingBox.width;
|
||||
var y1 = Math.sin(tree.nodes[current].feats[0]) * tree.nodes[current].feats[2] * tree.maxRadioRadius * boundingBox.height;
|
||||
var x2 = Math.cos(tree.nodes[current].feats[1]) * tree.nodes[current].feats[3] * tree.maxRadioRadius * boundingBox.width;
|
||||
var y2 = Math.sin(tree.nodes[current].feats[1]) * tree.nodes[current].feats[3] * tree.maxRadioRadius * boundingBox.height;
|
||||
|
||||
var project_x1 = rotation[0][0] * x1 + rotation[0][1] * y1;
|
||||
var project_y1 = rotation[1][0] * x1 + rotation[1][1] * y1;
|
||||
|
||||
var real_x1 = Math.floor(project_x1 + shape[tree.landmarkID][0]);
|
||||
var real_y1 = Math.floor(project_y1 + shape[tree.landmarkID][1]);
|
||||
real_x1 = Math.max(0.0, Math.min(real_x1, image.height - 1.0));
|
||||
real_y1 = Math.max(0.0, Math.min(real_y1, image.width - 1.0));
|
||||
|
||||
var project_x2 = rotation[0][0] * x2 + rotation[0][1] * y2;
|
||||
var project_y2 = rotation[1][0] * x2 + rotation[1][1] * y2;
|
||||
|
||||
var real_x2 = Math.floor(project_x2 + shape[tree.landmarkID][0]);
|
||||
var real_y2 = Math.floor(project_y2 + shape[tree.landmarkID][1]);
|
||||
real_x2 = Math.max(0.0, Math.min(real_x2, image.height - 1.0));
|
||||
real_y2 = Math.max(0.0, Math.min(real_y2, image.width - 1.0));
|
||||
var pdf = Math.floor(image.data[real_y1*image.width + real_x1]) -
|
||||
Math.floor(image.data[real_y2 * image.width +real_x2]);
|
||||
|
||||
if(pdf < tree.nodes[current].thresh){
|
||||
current = tree.nodes[current].cnodes[0];
|
||||
}else{
|
||||
current = tree.nodes[current].cnodes[1];
|
||||
}
|
||||
|
||||
if (tree.nodes[current].is_leafnode == 1) {
|
||||
bincode = 1;
|
||||
for (var i=0; i < tree.leafnodes.length; i++) {
|
||||
if (tree.leafnodes[i] == current) {
|
||||
return bincode;
|
||||
}
|
||||
bincode++;
|
||||
}
|
||||
return bincode;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return bincode;
|
||||
}
|
||||
|
||||
}());
|
|
@ -0,0 +1 @@
|
|||
tracking.LBF.LandmarksData=[[.0125684,.210687],[.0357801,.468239],[.115541,.712995],[.284357,.905924],[.514999,.996969],[.742149,.899084],[.908075,.698924],[.976219,.446131],[.985153,.186042],[.102259,.0993176],[.244642,.0382795],[.405298,.0817395],[.574051,.0755624],[.736492,.0254858],[.879617,.0749889],[.494662,.182299],[.409008,.498333],[.502223,.532951],[.594788,.495907],[.201686,.196578],[.249652,.163191],[.313234,.163275],[.363542,.203391],[.628143,.197082],[.675643,.154603],[.738182,.151877],[.787497,.18301],[.321899,.669231],[.502462,.632468],[.692712,.659599],[.50761,.764184]];
|
|
@ -0,0 +1,280 @@
|
|||
(function() {
|
||||
/**
|
||||
* ViolaJones utility.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.ViolaJones = {};
|
||||
|
||||
/**
|
||||
* Holds the minimum area of intersection that defines when a rectangle is
|
||||
* from the same group. Often when a face is matched multiple rectangles are
|
||||
* classified as possible rectangles to represent the face, when they
|
||||
* intersects they are grouped as one face.
|
||||
* @type {number}
|
||||
* @default 0.5
|
||||
* @static
|
||||
*/
|
||||
tracking.ViolaJones.REGIONS_OVERLAP = 0.5;
|
||||
|
||||
/**
|
||||
* Holds the HAAR cascade classifiers converted from OpenCV training.
|
||||
* @type {array}
|
||||
* @static
|
||||
*/
|
||||
tracking.ViolaJones.classifiers = {};
|
||||
|
||||
/**
|
||||
* Detects through the HAAR cascade data rectangles matches.
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {number} initialScale The initial scale to start the block
|
||||
* scaling.
|
||||
* @param {number} scaleFactor The scale factor to scale the feature block.
|
||||
* @param {number} stepSize The block step size.
|
||||
* @param {number} edgesDensity Percentage density edges inside the
|
||||
* classifier block. Value from [0.0, 1.0], defaults to 0.2. If specified
|
||||
* edge detection will be applied to the image to prune dead areas of the
|
||||
* image, this can improve significantly performance.
|
||||
* @param {number} data The HAAR cascade data.
|
||||
* @return {array} Found rectangles.
|
||||
* @static
|
||||
*/
|
||||
tracking.ViolaJones.detect = function(pixels, width, height, initialScale, scaleFactor, stepSize, edgesDensity, data) {
|
||||
var total = 0;
|
||||
var rects = [];
|
||||
var integralImage = new Int32Array(width * height);
|
||||
var integralImageSquare = new Int32Array(width * height);
|
||||
var tiltedIntegralImage = new Int32Array(width * height);
|
||||
|
||||
var integralImageSobel;
|
||||
if (edgesDensity > 0) {
|
||||
integralImageSobel = new Int32Array(width * height);
|
||||
}
|
||||
|
||||
tracking.Image.computeIntegralImage(pixels, width, height, integralImage, integralImageSquare, tiltedIntegralImage, integralImageSobel);
|
||||
|
||||
var minWidth = data[0];
|
||||
var minHeight = data[1];
|
||||
var scale = initialScale * scaleFactor;
|
||||
var blockWidth = (scale * minWidth) | 0;
|
||||
var blockHeight = (scale * minHeight) | 0;
|
||||
|
||||
while (blockWidth < width && blockHeight < height) {
|
||||
var step = (scale * stepSize + 0.5) | 0;
|
||||
for (var i = 0; i < (height - blockHeight); i += step) {
|
||||
for (var j = 0; j < (width - blockWidth); j += step) {
|
||||
|
||||
if (edgesDensity > 0) {
|
||||
if (this.isTriviallyExcluded(edgesDensity, integralImageSobel, i, j, width, blockWidth, blockHeight)) {
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
if (this.evalStages_(data, integralImage, integralImageSquare, tiltedIntegralImage, i, j, width, blockWidth, blockHeight, scale)) {
|
||||
rects[total++] = {
|
||||
width: blockWidth,
|
||||
height: blockHeight,
|
||||
x: j,
|
||||
y: i
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
scale *= scaleFactor;
|
||||
blockWidth = (scale * minWidth) | 0;
|
||||
blockHeight = (scale * minHeight) | 0;
|
||||
}
|
||||
return this.mergeRectangles_(rects);
|
||||
};
|
||||
|
||||
/**
|
||||
* Fast check to test whether the edges density inside the block is greater
|
||||
* than a threshold, if true it tests the stages. This can improve
|
||||
* significantly performance.
|
||||
* @param {number} edgesDensity Percentage density edges inside the
|
||||
* classifier block.
|
||||
* @param {array} integralImageSobel The integral image of a sobel image.
|
||||
* @param {number} i Vertical position of the pixel to be evaluated.
|
||||
* @param {number} j Horizontal position of the pixel to be evaluated.
|
||||
* @param {number} width The image width.
|
||||
* @return {boolean} True whether the block at position i,j can be skipped,
|
||||
* false otherwise.
|
||||
* @static
|
||||
* @protected
|
||||
*/
|
||||
tracking.ViolaJones.isTriviallyExcluded = function(edgesDensity, integralImageSobel, i, j, width, blockWidth, blockHeight) {
|
||||
var wbA = i * width + j;
|
||||
var wbB = wbA + blockWidth;
|
||||
var wbD = wbA + blockHeight * width;
|
||||
var wbC = wbD + blockWidth;
|
||||
var blockEdgesDensity = (integralImageSobel[wbA] - integralImageSobel[wbB] - integralImageSobel[wbD] + integralImageSobel[wbC]) / (blockWidth * blockHeight * 255);
|
||||
if (blockEdgesDensity < edgesDensity) {
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
/**
|
||||
* Evaluates if the block size on i,j position is a valid HAAR cascade
|
||||
* stage.
|
||||
* @param {number} data The HAAR cascade data.
|
||||
* @param {number} i Vertical position of the pixel to be evaluated.
|
||||
* @param {number} j Horizontal position of the pixel to be evaluated.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} blockSize The block size.
|
||||
* @param {number} scale The scale factor of the block size and its original
|
||||
* size.
|
||||
* @param {number} inverseArea The inverse area of the block size.
|
||||
* @return {boolean} Whether the region passes all the stage tests.
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.ViolaJones.evalStages_ = function(data, integralImage, integralImageSquare, tiltedIntegralImage, i, j, width, blockWidth, blockHeight, scale) {
|
||||
var inverseArea = 1.0 / (blockWidth * blockHeight);
|
||||
var wbA = i * width + j;
|
||||
var wbB = wbA + blockWidth;
|
||||
var wbD = wbA + blockHeight * width;
|
||||
var wbC = wbD + blockWidth;
|
||||
var mean = (integralImage[wbA] - integralImage[wbB] - integralImage[wbD] + integralImage[wbC]) * inverseArea;
|
||||
var variance = (integralImageSquare[wbA] - integralImageSquare[wbB] - integralImageSquare[wbD] + integralImageSquare[wbC]) * inverseArea - mean * mean;
|
||||
|
||||
var standardDeviation = 1;
|
||||
if (variance > 0) {
|
||||
standardDeviation = Math.sqrt(variance);
|
||||
}
|
||||
|
||||
var length = data.length;
|
||||
|
||||
for (var w = 2; w < length; ) {
|
||||
var stageSum = 0;
|
||||
var stageThreshold = data[w++];
|
||||
var nodeLength = data[w++];
|
||||
|
||||
while (nodeLength--) {
|
||||
var rectsSum = 0;
|
||||
var tilted = data[w++];
|
||||
var rectsLength = data[w++];
|
||||
|
||||
for (var r = 0; r < rectsLength; r++) {
|
||||
var rectLeft = (j + data[w++] * scale + 0.5) | 0;
|
||||
var rectTop = (i + data[w++] * scale + 0.5) | 0;
|
||||
var rectWidth = (data[w++] * scale + 0.5) | 0;
|
||||
var rectHeight = (data[w++] * scale + 0.5) | 0;
|
||||
var rectWeight = data[w++];
|
||||
|
||||
var w1;
|
||||
var w2;
|
||||
var w3;
|
||||
var w4;
|
||||
if (tilted) {
|
||||
// RectSum(r) = RSAT(x-h+w, y+w+h-1) + RSAT(x, y-1) - RSAT(x-h, y+h-1) - RSAT(x+w, y+w-1)
|
||||
w1 = (rectLeft - rectHeight + rectWidth) + (rectTop + rectWidth + rectHeight - 1) * width;
|
||||
w2 = rectLeft + (rectTop - 1) * width;
|
||||
w3 = (rectLeft - rectHeight) + (rectTop + rectHeight - 1) * width;
|
||||
w4 = (rectLeft + rectWidth) + (rectTop + rectWidth - 1) * width;
|
||||
rectsSum += (tiltedIntegralImage[w1] + tiltedIntegralImage[w2] - tiltedIntegralImage[w3] - tiltedIntegralImage[w4]) * rectWeight;
|
||||
} else {
|
||||
// RectSum(r) = SAT(x-1, y-1) + SAT(x+w-1, y+h-1) - SAT(x-1, y+h-1) - SAT(x+w-1, y-1)
|
||||
w1 = rectTop * width + rectLeft;
|
||||
w2 = w1 + rectWidth;
|
||||
w3 = w1 + rectHeight * width;
|
||||
w4 = w3 + rectWidth;
|
||||
rectsSum += (integralImage[w1] - integralImage[w2] - integralImage[w3] + integralImage[w4]) * rectWeight;
|
||||
// TODO: Review the code below to analyze performance when using it instead.
|
||||
// w1 = (rectLeft - 1) + (rectTop - 1) * width;
|
||||
// w2 = (rectLeft + rectWidth - 1) + (rectTop + rectHeight - 1) * width;
|
||||
// w3 = (rectLeft - 1) + (rectTop + rectHeight - 1) * width;
|
||||
// w4 = (rectLeft + rectWidth - 1) + (rectTop - 1) * width;
|
||||
// rectsSum += (integralImage[w1] + integralImage[w2] - integralImage[w3] - integralImage[w4]) * rectWeight;
|
||||
}
|
||||
}
|
||||
|
||||
var nodeThreshold = data[w++];
|
||||
var nodeLeft = data[w++];
|
||||
var nodeRight = data[w++];
|
||||
|
||||
if (rectsSum * inverseArea < nodeThreshold * standardDeviation) {
|
||||
stageSum += nodeLeft;
|
||||
} else {
|
||||
stageSum += nodeRight;
|
||||
}
|
||||
}
|
||||
|
||||
if (stageSum < stageThreshold) {
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
};
|
||||
|
||||
/**
|
||||
* Postprocess the detected sub-windows in order to combine overlapping
|
||||
* detections into a single detection.
|
||||
* @param {array} rects
|
||||
* @return {array}
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.ViolaJones.mergeRectangles_ = function(rects) {
|
||||
var disjointSet = new tracking.DisjointSet(rects.length);
|
||||
|
||||
for (var i = 0; i < rects.length; i++) {
|
||||
var r1 = rects[i];
|
||||
for (var j = 0; j < rects.length; j++) {
|
||||
var r2 = rects[j];
|
||||
if (tracking.Math.intersectRect(r1.x, r1.y, r1.x + r1.width, r1.y + r1.height, r2.x, r2.y, r2.x + r2.width, r2.y + r2.height)) {
|
||||
var x1 = Math.max(r1.x, r2.x);
|
||||
var y1 = Math.max(r1.y, r2.y);
|
||||
var x2 = Math.min(r1.x + r1.width, r2.x + r2.width);
|
||||
var y2 = Math.min(r1.y + r1.height, r2.y + r2.height);
|
||||
var overlap = (x1 - x2) * (y1 - y2);
|
||||
var area1 = (r1.width * r1.height);
|
||||
var area2 = (r2.width * r2.height);
|
||||
|
||||
if ((overlap / (area1 * (area1 / area2)) >= this.REGIONS_OVERLAP) &&
|
||||
(overlap / (area2 * (area1 / area2)) >= this.REGIONS_OVERLAP)) {
|
||||
disjointSet.union(i, j);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
var map = {};
|
||||
for (var k = 0; k < disjointSet.length; k++) {
|
||||
var rep = disjointSet.find(k);
|
||||
if (!map[rep]) {
|
||||
map[rep] = {
|
||||
total: 1,
|
||||
width: rects[k].width,
|
||||
height: rects[k].height,
|
||||
x: rects[k].x,
|
||||
y: rects[k].y
|
||||
};
|
||||
continue;
|
||||
}
|
||||
map[rep].total++;
|
||||
map[rep].width += rects[k].width;
|
||||
map[rep].height += rects[k].height;
|
||||
map[rep].x += rects[k].x;
|
||||
map[rep].y += rects[k].y;
|
||||
}
|
||||
|
||||
var result = [];
|
||||
Object.keys(map).forEach(function(key) {
|
||||
var rect = map[key];
|
||||
result.push({
|
||||
total: rect.total,
|
||||
width: (rect.width / rect.total + 0.5) | 0,
|
||||
height: (rect.height / rect.total + 0.5) | 0,
|
||||
x: (rect.x / rect.total + 0.5) | 0,
|
||||
y: (rect.y / rect.total + 0.5) | 0
|
||||
});
|
||||
});
|
||||
|
||||
return result;
|
||||
};
|
||||
|
||||
}());
|
|
@ -0,0 +1,198 @@
|
|||
(function() {
|
||||
/**
|
||||
* Brief intends for "Binary Robust Independent Elementary Features".This
|
||||
* method generates a binary string for each keypoint found by an extractor
|
||||
* method.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.Brief = {};
|
||||
|
||||
/**
|
||||
* The set of binary tests is defined by the nd (x,y)-location pairs
|
||||
* uniquely chosen during the initialization. Values could vary between N =
|
||||
* 128,256,512. N=128 yield good compromises between speed, storage
|
||||
* efficiency, and recognition rate.
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.Brief.N = 512;
|
||||
|
||||
/**
|
||||
* Caches coordinates values of (x,y)-location pairs uniquely chosen during
|
||||
* the initialization.
|
||||
* @type {Object.<number, Int32Array>}
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.Brief.randomImageOffsets_ = {};
|
||||
|
||||
/**
|
||||
* Caches delta values of (x,y)-location pairs uniquely chosen during
|
||||
* the initialization.
|
||||
* @type {Int32Array}
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.Brief.randomWindowOffsets_ = null;
|
||||
|
||||
/**
|
||||
* Generates a binary string for each found keypoints extracted using an
|
||||
* extractor method.
|
||||
* @param {array} The grayscale pixels in a linear [p1,p2,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {array} keypoints
|
||||
* @return {Int32Array} Returns an array where for each four sequence int
|
||||
* values represent the descriptor binary string (128 bits) necessary
|
||||
* to describe the corner, e.g. [0,0,0,0, 0,0,0,0, ...].
|
||||
* @static
|
||||
*/
|
||||
tracking.Brief.getDescriptors = function(pixels, width, keypoints) {
|
||||
// Optimizing divide by 32 operation using binary shift
|
||||
// (this.N >> 5) === this.N/32.
|
||||
var descriptors = new Int32Array((keypoints.length >> 1) * (this.N >> 5));
|
||||
var descriptorWord = 0;
|
||||
var offsets = this.getRandomOffsets_(width);
|
||||
var position = 0;
|
||||
|
||||
for (var i = 0; i < keypoints.length; i += 2) {
|
||||
var w = width * keypoints[i + 1] + keypoints[i];
|
||||
|
||||
var offsetsPosition = 0;
|
||||
for (var j = 0, n = this.N; j < n; j++) {
|
||||
if (pixels[offsets[offsetsPosition++] + w] < pixels[offsets[offsetsPosition++] + w]) {
|
||||
// The bit in the position `j % 32` of descriptorWord should be set to 1. We do
|
||||
// this by making an OR operation with a binary number that only has the bit
|
||||
// in that position set to 1. That binary number is obtained by shifting 1 left by
|
||||
// `j % 32` (which is the same as `j & 31` left) positions.
|
||||
descriptorWord |= 1 << (j & 31);
|
||||
}
|
||||
|
||||
// If the next j is a multiple of 32, we will need to use a new descriptor word to hold
|
||||
// the next results.
|
||||
if (!((j + 1) & 31)) {
|
||||
descriptors[position++] = descriptorWord;
|
||||
descriptorWord = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return descriptors;
|
||||
};
|
||||
|
||||
/**
|
||||
* Matches sets of features {mi} and {m′j} extracted from two images taken
|
||||
* from similar, and often successive, viewpoints. A classical procedure
|
||||
* runs as follows. For each point {mi} in the first image, search in a
|
||||
* region of the second image around location {mi} for point {m′j}. The
|
||||
* search is based on the similarity of the local image windows, also known
|
||||
* as kernel windows, centered on the points, which strongly characterizes
|
||||
* the points when the images are sufficiently close. Once each keypoint is
|
||||
* described with its binary string, they need to be compared with the
|
||||
* closest matching point. Distance metric is critical to the performance of
|
||||
* in- trusion detection systems. Thus using binary strings reduces the size
|
||||
* of the descriptor and provides an interesting data structure that is fast
|
||||
* to operate whose similarity can be measured by the Hamming distance.
|
||||
* @param {array} keypoints1
|
||||
* @param {array} descriptors1
|
||||
* @param {array} keypoints2
|
||||
* @param {array} descriptors2
|
||||
* @return {Int32Array} Returns an array where the index is the corner1
|
||||
* index coordinate, and the value is the corresponding match index of
|
||||
* corner2, e.g. keypoints1=[x0,y0,x1,y1,...] and
|
||||
* keypoints2=[x'0,y'0,x'1,y'1,...], if x0 matches x'1 and x1 matches x'0,
|
||||
* the return array would be [3,0].
|
||||
* @static
|
||||
*/
|
||||
tracking.Brief.match = function(keypoints1, descriptors1, keypoints2, descriptors2) {
|
||||
var len1 = keypoints1.length >> 1;
|
||||
var len2 = keypoints2.length >> 1;
|
||||
var matches = new Array(len1);
|
||||
|
||||
for (var i = 0; i < len1; i++) {
|
||||
var min = Infinity;
|
||||
var minj = 0;
|
||||
for (var j = 0; j < len2; j++) {
|
||||
var dist = 0;
|
||||
// Optimizing divide by 32 operation using binary shift
|
||||
// (this.N >> 5) === this.N/32.
|
||||
for (var k = 0, n = this.N >> 5; k < n; k++) {
|
||||
dist += tracking.Math.hammingWeight(descriptors1[i * n + k] ^ descriptors2[j * n + k]);
|
||||
}
|
||||
if (dist < min) {
|
||||
min = dist;
|
||||
minj = j;
|
||||
}
|
||||
}
|
||||
matches[i] = {
|
||||
index1: i,
|
||||
index2: minj,
|
||||
keypoint1: [keypoints1[2 * i], keypoints1[2 * i + 1]],
|
||||
keypoint2: [keypoints2[2 * minj], keypoints2[2 * minj + 1]],
|
||||
confidence: 1 - min / this.N
|
||||
};
|
||||
}
|
||||
|
||||
return matches;
|
||||
};
|
||||
|
||||
/**
|
||||
* Removes matches outliers by testing matches on both directions.
|
||||
* @param {array} keypoints1
|
||||
* @param {array} descriptors1
|
||||
* @param {array} keypoints2
|
||||
* @param {array} descriptors2
|
||||
* @return {Int32Array} Returns an array where the index is the corner1
|
||||
* index coordinate, and the value is the corresponding match index of
|
||||
* corner2, e.g. keypoints1=[x0,y0,x1,y1,...] and
|
||||
* keypoints2=[x'0,y'0,x'1,y'1,...], if x0 matches x'1 and x1 matches x'0,
|
||||
* the return array would be [3,0].
|
||||
* @static
|
||||
*/
|
||||
tracking.Brief.reciprocalMatch = function(keypoints1, descriptors1, keypoints2, descriptors2) {
|
||||
var matches = [];
|
||||
if (keypoints1.length === 0 || keypoints2.length === 0) {
|
||||
return matches;
|
||||
}
|
||||
|
||||
var matches1 = tracking.Brief.match(keypoints1, descriptors1, keypoints2, descriptors2);
|
||||
var matches2 = tracking.Brief.match(keypoints2, descriptors2, keypoints1, descriptors1);
|
||||
for (var i = 0; i < matches1.length; i++) {
|
||||
if (matches2[matches1[i].index2].index2 === i) {
|
||||
matches.push(matches1[i]);
|
||||
}
|
||||
}
|
||||
return matches;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the coordinates values of (x,y)-location pairs uniquely chosen
|
||||
* during the initialization.
|
||||
* @return {array} Array with the random offset values.
|
||||
* @private
|
||||
*/
|
||||
tracking.Brief.getRandomOffsets_ = function(width) {
|
||||
if (!this.randomWindowOffsets_) {
|
||||
var windowPosition = 0;
|
||||
var windowOffsets = new Int32Array(4 * this.N);
|
||||
for (var i = 0; i < this.N; i++) {
|
||||
windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
|
||||
windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
|
||||
windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
|
||||
windowOffsets[windowPosition++] = Math.round(tracking.Math.uniformRandom(-15, 16));
|
||||
}
|
||||
this.randomWindowOffsets_ = windowOffsets;
|
||||
}
|
||||
|
||||
if (!this.randomImageOffsets_[width]) {
|
||||
var imagePosition = 0;
|
||||
var imageOffsets = new Int32Array(2 * this.N);
|
||||
for (var j = 0; j < this.N; j++) {
|
||||
imageOffsets[imagePosition++] = this.randomWindowOffsets_[4 * j] * width + this.randomWindowOffsets_[4 * j + 1];
|
||||
imageOffsets[imagePosition++] = this.randomWindowOffsets_[4 * j + 2] * width + this.randomWindowOffsets_[4 * j + 3];
|
||||
}
|
||||
this.randomImageOffsets_[width] = imageOffsets;
|
||||
}
|
||||
|
||||
return this.randomImageOffsets_[width];
|
||||
};
|
||||
}());
|
|
@ -0,0 +1,250 @@
|
|||
(function() {
|
||||
/**
|
||||
* FAST intends for "Features from Accelerated Segment Test". This method
|
||||
* performs a point segment test corner detection. The segment test
|
||||
* criterion operates by considering a circle of sixteen pixels around the
|
||||
* corner candidate p. The detector classifies p as a corner if there exists
|
||||
* a set of n contiguous pixelsin the circle which are all brighter than the
|
||||
* intensity of the candidate pixel Ip plus a threshold t, or all darker
|
||||
* than Ip − t.
|
||||
*
|
||||
* 15 00 01
|
||||
* 14 02
|
||||
* 13 03
|
||||
* 12 [] 04
|
||||
* 11 05
|
||||
* 10 06
|
||||
* 09 08 07
|
||||
*
|
||||
* For more reference:
|
||||
* http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.3991&rep=rep1&type=pdf
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.Fast = {};
|
||||
|
||||
/**
|
||||
* Holds the threshold to determine whether the tested pixel is brighter or
|
||||
* darker than the corner candidate p.
|
||||
* @type {number}
|
||||
* @default 40
|
||||
* @static
|
||||
*/
|
||||
tracking.Fast.THRESHOLD = 40;
|
||||
|
||||
/**
|
||||
* Caches coordinates values of the circle surrounding the pixel candidate p.
|
||||
* @type {Object.<number, Int32Array>}
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.Fast.circles_ = {};
|
||||
|
||||
/**
|
||||
* Finds corners coordinates on the graysacaled image.
|
||||
* @param {array} The grayscale pixels in a linear [p1,p2,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {number} threshold to determine whether the tested pixel is brighter or
|
||||
* darker than the corner candidate p. Default value is 40.
|
||||
* @return {array} Array containing the coordinates of all found corners,
|
||||
* e.g. [x0,y0,x1,y1,...], where P(x0,y0) represents a corner coordinate.
|
||||
* @static
|
||||
*/
|
||||
tracking.Fast.findCorners = function(pixels, width, height, opt_threshold) {
|
||||
var circleOffsets = this.getCircleOffsets_(width);
|
||||
var circlePixels = new Int32Array(16);
|
||||
var corners = [];
|
||||
|
||||
if (opt_threshold === undefined) {
|
||||
opt_threshold = this.THRESHOLD;
|
||||
}
|
||||
|
||||
// When looping through the image pixels, skips the first three lines from
|
||||
// the image boundaries to constrain the surrounding circle inside the image
|
||||
// area.
|
||||
for (var i = 3; i < height - 3; i++) {
|
||||
for (var j = 3; j < width - 3; j++) {
|
||||
var w = i * width + j;
|
||||
var p = pixels[w];
|
||||
|
||||
// Loops the circle offsets to read the pixel value for the sixteen
|
||||
// surrounding pixels.
|
||||
for (var k = 0; k < 16; k++) {
|
||||
circlePixels[k] = pixels[w + circleOffsets[k]];
|
||||
}
|
||||
|
||||
if (this.isCorner(p, circlePixels, opt_threshold)) {
|
||||
// The pixel p is classified as a corner, as optimization increment j
|
||||
// by the circle radius 3 to skip the neighbor pixels inside the
|
||||
// surrounding circle. This can be removed without compromising the
|
||||
// result.
|
||||
corners.push(j, i);
|
||||
j += 3;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return corners;
|
||||
};
|
||||
|
||||
/**
|
||||
* Checks if the circle pixel is brighter than the candidate pixel p by
|
||||
* a threshold.
|
||||
* @param {number} circlePixel The circle pixel value.
|
||||
* @param {number} p The value of the candidate pixel p.
|
||||
* @param {number} threshold
|
||||
* @return {Boolean}
|
||||
* @static
|
||||
*/
|
||||
tracking.Fast.isBrighter = function(circlePixel, p, threshold) {
|
||||
return circlePixel - p > threshold;
|
||||
};
|
||||
|
||||
/**
|
||||
* Checks if the circle pixel is within the corner of the candidate pixel p
|
||||
* by a threshold.
|
||||
* @param {number} p The value of the candidate pixel p.
|
||||
* @param {number} circlePixel The circle pixel value.
|
||||
* @param {number} threshold
|
||||
* @return {Boolean}
|
||||
* @static
|
||||
*/
|
||||
tracking.Fast.isCorner = function(p, circlePixels, threshold) {
|
||||
if (this.isTriviallyExcluded(circlePixels, p, threshold)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
for (var x = 0; x < 16; x++) {
|
||||
var darker = true;
|
||||
var brighter = true;
|
||||
|
||||
for (var y = 0; y < 9; y++) {
|
||||
var circlePixel = circlePixels[(x + y) & 15];
|
||||
|
||||
if (!this.isBrighter(p, circlePixel, threshold)) {
|
||||
brighter = false;
|
||||
if (darker === false) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (!this.isDarker(p, circlePixel, threshold)) {
|
||||
darker = false;
|
||||
if (brighter === false) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (brighter || darker) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
/**
|
||||
* Checks if the circle pixel is darker than the candidate pixel p by
|
||||
* a threshold.
|
||||
* @param {number} circlePixel The circle pixel value.
|
||||
* @param {number} p The value of the candidate pixel p.
|
||||
* @param {number} threshold
|
||||
* @return {Boolean}
|
||||
* @static
|
||||
*/
|
||||
tracking.Fast.isDarker = function(circlePixel, p, threshold) {
|
||||
return p - circlePixel > threshold;
|
||||
};
|
||||
|
||||
/**
|
||||
* Fast check to test if the candidate pixel is a trivially excluded value.
|
||||
* In order to be a corner, the candidate pixel value should be darker or
|
||||
* brighter than 9-12 surrounding pixels, when at least three of the top,
|
||||
* bottom, left and right pixels are brighter or darker it can be
|
||||
* automatically excluded improving the performance.
|
||||
* @param {number} circlePixel The circle pixel value.
|
||||
* @param {number} p The value of the candidate pixel p.
|
||||
* @param {number} threshold
|
||||
* @return {Boolean}
|
||||
* @static
|
||||
* @protected
|
||||
*/
|
||||
tracking.Fast.isTriviallyExcluded = function(circlePixels, p, threshold) {
|
||||
var count = 0;
|
||||
var circleBottom = circlePixels[8];
|
||||
var circleLeft = circlePixels[12];
|
||||
var circleRight = circlePixels[4];
|
||||
var circleTop = circlePixels[0];
|
||||
|
||||
if (this.isBrighter(circleTop, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (this.isBrighter(circleRight, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (this.isBrighter(circleBottom, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (this.isBrighter(circleLeft, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
|
||||
if (count < 3) {
|
||||
count = 0;
|
||||
if (this.isDarker(circleTop, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (this.isDarker(circleRight, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (this.isDarker(circleBottom, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (this.isDarker(circleLeft, p, threshold)) {
|
||||
count++;
|
||||
}
|
||||
if (count < 3) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the sixteen offset values of the circle surrounding pixel.
|
||||
* @param {number} width The image width.
|
||||
* @return {array} Array with the sixteen offset values of the circle
|
||||
* surrounding pixel.
|
||||
* @private
|
||||
*/
|
||||
tracking.Fast.getCircleOffsets_ = function(width) {
|
||||
if (this.circles_[width]) {
|
||||
return this.circles_[width];
|
||||
}
|
||||
|
||||
var circle = new Int32Array(16);
|
||||
|
||||
circle[0] = -width - width - width;
|
||||
circle[1] = circle[0] + 1;
|
||||
circle[2] = circle[1] + width + 1;
|
||||
circle[3] = circle[2] + width + 1;
|
||||
circle[4] = circle[3] + width;
|
||||
circle[5] = circle[4] + width;
|
||||
circle[6] = circle[5] + width - 1;
|
||||
circle[7] = circle[6] + width - 1;
|
||||
circle[8] = circle[7] - 1;
|
||||
circle[9] = circle[8] - 1;
|
||||
circle[10] = circle[9] - width - 1;
|
||||
circle[11] = circle[10] - width - 1;
|
||||
circle[12] = circle[11] - width;
|
||||
circle[13] = circle[12] - width;
|
||||
circle[14] = circle[13] - width + 1;
|
||||
circle[15] = circle[14] - width + 1;
|
||||
|
||||
this.circles_[width] = circle;
|
||||
return circle;
|
||||
};
|
||||
}());
|
|
@ -0,0 +1,82 @@
|
|||
(function() {
|
||||
/**
|
||||
* Math utility.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.Math = {};
|
||||
|
||||
/**
|
||||
* Euclidean distance between two points P(x0, y0) and P(x1, y1).
|
||||
* @param {number} x0 Horizontal coordinate of P0.
|
||||
* @param {number} y0 Vertical coordinate of P0.
|
||||
* @param {number} x1 Horizontal coordinate of P1.
|
||||
* @param {number} y1 Vertical coordinate of P1.
|
||||
* @return {number} The euclidean distance.
|
||||
*/
|
||||
tracking.Math.distance = function(x0, y0, x1, y1) {
|
||||
var dx = x1 - x0;
|
||||
var dy = y1 - y0;
|
||||
|
||||
return Math.sqrt(dx * dx + dy * dy);
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculates the Hamming weight of a string, which is the number of symbols that are
|
||||
* different from the zero-symbol of the alphabet used. It is thus
|
||||
* equivalent to the Hamming distance from the all-zero string of the same
|
||||
* length. For the most typical case, a string of bits, this is the number
|
||||
* of 1's in the string.
|
||||
*
|
||||
* Example:
|
||||
*
|
||||
* <pre>
|
||||
* Binary string Hamming weight
|
||||
* 11101 4
|
||||
* 11101010 5
|
||||
* </pre>
|
||||
*
|
||||
* @param {number} i Number that holds the binary string to extract the hamming weight.
|
||||
* @return {number} The hamming weight.
|
||||
*/
|
||||
tracking.Math.hammingWeight = function(i) {
|
||||
i = i - ((i >> 1) & 0x55555555);
|
||||
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
|
||||
|
||||
return ((i + (i >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;
|
||||
};
|
||||
|
||||
/**
|
||||
* Generates a random number between [a, b] interval.
|
||||
* @param {number} a
|
||||
* @param {number} b
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.Math.uniformRandom = function(a, b) {
|
||||
return a + Math.random() * (b - a);
|
||||
};
|
||||
|
||||
/**
|
||||
* Tests if a rectangle intersects with another.
|
||||
*
|
||||
* <pre>
|
||||
* x0y0 -------- x2y2 --------
|
||||
* | | | |
|
||||
* -------- x1y1 -------- x3y3
|
||||
* </pre>
|
||||
*
|
||||
* @param {number} x0 Horizontal coordinate of P0.
|
||||
* @param {number} y0 Vertical coordinate of P0.
|
||||
* @param {number} x1 Horizontal coordinate of P1.
|
||||
* @param {number} y1 Vertical coordinate of P1.
|
||||
* @param {number} x2 Horizontal coordinate of P2.
|
||||
* @param {number} y2 Vertical coordinate of P2.
|
||||
* @param {number} x3 Horizontal coordinate of P3.
|
||||
* @param {number} y3 Vertical coordinate of P3.
|
||||
* @return {boolean}
|
||||
*/
|
||||
tracking.Math.intersectRect = function(x0, y0, x1, y1, x2, y2, x3, y3) {
|
||||
return !(x2 > x1 || x3 < x0 || y2 > y1 || y3 < y0);
|
||||
};
|
||||
|
||||
}());
|
|
@ -0,0 +1,185 @@
|
|||
(function() {
|
||||
/**
|
||||
* Matrix utility.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.Matrix = {};
|
||||
|
||||
/**
|
||||
* Loops the array organized as major-row order and executes `fn` callback
|
||||
* for each iteration. The `fn` callback receives the following parameters:
|
||||
* `(r,g,b,a,index,i,j)`, where `r,g,b,a` represents the pixel color with
|
||||
* alpha channel, `index` represents the position in the major-row order
|
||||
* array and `i,j` the respective indexes positions in two dimensions.
|
||||
* @param {array} pixels The pixels in a linear [r,g,b,a,...] array to loop
|
||||
* through.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {function} fn The callback function for each pixel.
|
||||
* @param {number} opt_jump Optional jump for the iteration, by default it
|
||||
* is 1, hence loops all the pixels of the array.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.forEach = function(pixels, width, height, fn, opt_jump) {
|
||||
opt_jump = opt_jump || 1;
|
||||
for (var i = 0; i < height; i += opt_jump) {
|
||||
for (var j = 0; j < width; j += opt_jump) {
|
||||
var w = i * width * 4 + j * 4;
|
||||
fn.call(this, pixels[w], pixels[w + 1], pixels[w + 2], pixels[w + 3], w, i, j);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Calculates the per-element subtraction of two NxM matrices and returns a
|
||||
* new NxM matrix as the result.
|
||||
* @param {matrix} a The first matrix.
|
||||
* @param {matrix} a The second matrix.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.sub = function(a, b){
|
||||
var res = tracking.Matrix.clone(a);
|
||||
for(var i=0; i < res.length; i++){
|
||||
for(var j=0; j < res[i].length; j++){
|
||||
res[i][j] -= b[i][j];
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the per-element sum of two NxM matrices and returns a new NxM
|
||||
* NxM matrix as the result.
|
||||
* @param {matrix} a The first matrix.
|
||||
* @param {matrix} a The second matrix.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.add = function(a, b){
|
||||
var res = tracking.Matrix.clone(a);
|
||||
for(var i=0; i < res.length; i++){
|
||||
for(var j=0; j < res[i].length; j++){
|
||||
res[i][j] += b[i][j];
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Clones a matrix (or part of it) and returns a new matrix as the result.
|
||||
* @param {matrix} src The matrix to be cloned.
|
||||
* @param {number} width The second matrix.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.clone = function(src, width, height){
|
||||
width = width || src[0].length;
|
||||
height = height || src.length;
|
||||
var temp = new Array(height);
|
||||
var i = height;
|
||||
while(i--){
|
||||
temp[i] = new Array(width);
|
||||
var j = width;
|
||||
while(j--) temp[i][j] = src[i][j];
|
||||
}
|
||||
return temp;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply a matrix by a scalar and returns a new matrix as the result.
|
||||
* @param {number} scalar The scalar to multiply the matrix by.
|
||||
* @param {matrix} src The matrix to be multiplied.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.mulScalar = function(scalar, src){
|
||||
var res = tracking.Matrix.clone(src);
|
||||
for(var i=0; i < src.length; i++){
|
||||
for(var j=0; j < src[i].length; j++){
|
||||
res[i][j] *= scalar;
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Transpose a matrix and returns a new matrix as the result.
|
||||
* @param {matrix} src The matrix to be transposed.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.transpose = function(src){
|
||||
var transpose = new Array(src[0].length);
|
||||
for(var i=0; i < src[0].length; i++){
|
||||
transpose[i] = new Array(src.length);
|
||||
for(var j=0; j < src.length; j++){
|
||||
transpose[i][j] = src[j][i];
|
||||
}
|
||||
}
|
||||
return transpose;
|
||||
}
|
||||
|
||||
/**
|
||||
* Multiply an MxN matrix with an NxP matrix and returns a new MxP matrix
|
||||
* as the result.
|
||||
* @param {matrix} a The first matrix.
|
||||
* @param {matrix} b The second matrix.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.mul = function(a, b) {
|
||||
var res = new Array(a.length);
|
||||
for (var i = 0; i < a.length; i++) {
|
||||
res[i] = new Array(b[0].length);
|
||||
for (var j = 0; j < b[0].length; j++) {
|
||||
res[i][j] = 0;
|
||||
for (var k = 0; k < a[0].length; k++) {
|
||||
res[i][j] += a[i][k] * b[k][j];
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates the absolute norm of a matrix.
|
||||
* @param {matrix} src The matrix which norm will be calculated.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.norm = function(src){
|
||||
var res = 0;
|
||||
for(var i=0; i < src.length; i++){
|
||||
for(var j=0; j < src[i].length; j++){
|
||||
res += src[i][j]*src[i][j];
|
||||
}
|
||||
}
|
||||
return Math.sqrt(res);
|
||||
}
|
||||
|
||||
/**
|
||||
* Calculates and returns the covariance matrix of a set of vectors as well
|
||||
* as the mean of the matrix.
|
||||
* @param {matrix} src The matrix which covariance matrix will be calculated.
|
||||
* @static
|
||||
*/
|
||||
tracking.Matrix.calcCovarMatrix = function(src){
|
||||
|
||||
var mean = new Array(src.length);
|
||||
for(var i=0; i < src.length; i++){
|
||||
mean[i] = [0.0];
|
||||
for(var j=0; j < src[i].length; j++){
|
||||
mean[i][0] += src[i][j]/src[i].length;
|
||||
}
|
||||
}
|
||||
|
||||
var deltaFull = tracking.Matrix.clone(mean);
|
||||
for(var i=0; i < deltaFull.length; i++){
|
||||
for(var j=0; j < src[0].length - 1; j++){
|
||||
deltaFull[i].push(deltaFull[i][0]);
|
||||
}
|
||||
}
|
||||
|
||||
var a = tracking.Matrix.sub(src, deltaFull);
|
||||
var b = tracking.Matrix.transpose(a);
|
||||
var covar = tracking.Matrix.mul(b,a);
|
||||
return [covar, mean];
|
||||
|
||||
}
|
||||
|
||||
}());
|
|
@ -0,0 +1,10 @@
|
|||
(function() {
|
||||
/**
|
||||
* EPnp utility.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.EPnP = {};
|
||||
|
||||
tracking.EPnP.solve = function(objectPoints, imagePoints, cameraMatrix) {};
|
||||
}());
|
|
@ -0,0 +1,425 @@
|
|||
(function() {
|
||||
/**
|
||||
* ColorTracker utility to track colored blobs in a frame using color
|
||||
* difference evaluation.
|
||||
* @constructor
|
||||
* @param {string|Array.<string>} opt_colors Optional colors to track.
|
||||
* @extends {tracking.Tracker}
|
||||
*/
|
||||
tracking.ColorTracker = function(opt_colors) {
|
||||
tracking.ColorTracker.base(this, 'constructor');
|
||||
|
||||
if (typeof opt_colors === 'string') {
|
||||
opt_colors = [opt_colors];
|
||||
}
|
||||
|
||||
if (opt_colors) {
|
||||
opt_colors.forEach(function(color) {
|
||||
if (!tracking.ColorTracker.getColor(color)) {
|
||||
throw new Error('Color not valid, try `new tracking.ColorTracker("magenta")`.');
|
||||
}
|
||||
});
|
||||
this.setColors(opt_colors);
|
||||
}
|
||||
};
|
||||
|
||||
tracking.inherits(tracking.ColorTracker, tracking.Tracker);
|
||||
|
||||
/**
|
||||
* Holds the known colors.
|
||||
* @type {Object.<string, function>}
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.ColorTracker.knownColors_ = {};
|
||||
|
||||
/**
|
||||
* Caches coordinates values of the neighbours surrounding a pixel.
|
||||
* @type {Object.<number, Int32Array>}
|
||||
* @private
|
||||
* @static
|
||||
*/
|
||||
tracking.ColorTracker.neighbours_ = {};
|
||||
|
||||
/**
|
||||
* Registers a color as known color.
|
||||
* @param {string} name The color name.
|
||||
* @param {function} fn The color function to test if the passed (r,g,b) is
|
||||
* the desired color.
|
||||
* @static
|
||||
*/
|
||||
tracking.ColorTracker.registerColor = function(name, fn) {
|
||||
tracking.ColorTracker.knownColors_[name] = fn;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the known color function that is able to test whether an (r,g,b) is
|
||||
* the desired color.
|
||||
* @param {string} name The color name.
|
||||
* @return {function} The known color test function.
|
||||
* @static
|
||||
*/
|
||||
tracking.ColorTracker.getColor = function(name) {
|
||||
return tracking.ColorTracker.knownColors_[name];
|
||||
};
|
||||
|
||||
/**
|
||||
* Holds the colors to be tracked by the `ColorTracker` instance.
|
||||
* @default ['magenta']
|
||||
* @type {Array.<string>}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.colors = ['magenta'];
|
||||
|
||||
/**
|
||||
* Holds the minimum dimension to classify a rectangle.
|
||||
* @default 20
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.minDimension = 20;
|
||||
|
||||
/**
|
||||
* Holds the maximum dimension to classify a rectangle.
|
||||
* @default Infinity
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.maxDimension = Infinity;
|
||||
|
||||
|
||||
/**
|
||||
* Holds the minimum group size to be classified as a rectangle.
|
||||
* @default 30
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.minGroupSize = 30;
|
||||
|
||||
/**
|
||||
* Calculates the central coordinate from the cloud points. The cloud points
|
||||
* are all points that matches the desired color.
|
||||
* @param {Array.<number>} cloud Major row order array containing all the
|
||||
* points from the desired color, e.g. [x1, y1, c2, y2, ...].
|
||||
* @param {number} total Total numbers of pixels of the desired color.
|
||||
* @return {object} Object containing the x, y and estimated z coordinate of
|
||||
* the blog extracted from the cloud points.
|
||||
* @private
|
||||
*/
|
||||
tracking.ColorTracker.prototype.calculateDimensions_ = function(cloud, total) {
|
||||
var maxx = -1;
|
||||
var maxy = -1;
|
||||
var minx = Infinity;
|
||||
var miny = Infinity;
|
||||
|
||||
for (var c = 0; c < total; c += 2) {
|
||||
var x = cloud[c];
|
||||
var y = cloud[c + 1];
|
||||
|
||||
if (x < minx) {
|
||||
minx = x;
|
||||
}
|
||||
if (x > maxx) {
|
||||
maxx = x;
|
||||
}
|
||||
if (y < miny) {
|
||||
miny = y;
|
||||
}
|
||||
if (y > maxy) {
|
||||
maxy = y;
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
width: maxx - minx,
|
||||
height: maxy - miny,
|
||||
x: minx,
|
||||
y: miny
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the colors being tracked by the `ColorTracker` instance.
|
||||
* @return {Array.<string>}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.getColors = function() {
|
||||
return this.colors;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the minimum dimension to classify a rectangle.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.getMinDimension = function() {
|
||||
return this.minDimension;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the maximum dimension to classify a rectangle.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.getMaxDimension = function() {
|
||||
return this.maxDimension;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the minimum group size to be classified as a rectangle.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ColorTracker.prototype.getMinGroupSize = function() {
|
||||
return this.minGroupSize;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the eight offset values of the neighbours surrounding a pixel.
|
||||
* @param {number} width The image width.
|
||||
* @return {array} Array with the eight offset values of the neighbours
|
||||
* surrounding a pixel.
|
||||
* @private
|
||||
*/
|
||||
tracking.ColorTracker.prototype.getNeighboursForWidth_ = function(width) {
|
||||
if (tracking.ColorTracker.neighbours_[width]) {
|
||||
return tracking.ColorTracker.neighbours_[width];
|
||||
}
|
||||
|
||||
var neighbours = new Int32Array(8);
|
||||
|
||||
neighbours[0] = -width * 4;
|
||||
neighbours[1] = -width * 4 + 4;
|
||||
neighbours[2] = 4;
|
||||
neighbours[3] = width * 4 + 4;
|
||||
neighbours[4] = width * 4;
|
||||
neighbours[5] = width * 4 - 4;
|
||||
neighbours[6] = -4;
|
||||
neighbours[7] = -width * 4 - 4;
|
||||
|
||||
tracking.ColorTracker.neighbours_[width] = neighbours;
|
||||
|
||||
return neighbours;
|
||||
};
|
||||
|
||||
/**
|
||||
* Unites groups whose bounding box intersect with each other.
|
||||
* @param {Array.<Object>} rects
|
||||
* @private
|
||||
*/
|
||||
tracking.ColorTracker.prototype.mergeRectangles_ = function(rects) {
|
||||
var intersects;
|
||||
var results = [];
|
||||
var minDimension = this.getMinDimension();
|
||||
var maxDimension = this.getMaxDimension();
|
||||
|
||||
for (var r = 0; r < rects.length; r++) {
|
||||
var r1 = rects[r];
|
||||
intersects = true;
|
||||
for (var s = r + 1; s < rects.length; s++) {
|
||||
var r2 = rects[s];
|
||||
if (tracking.Math.intersectRect(r1.x, r1.y, r1.x + r1.width, r1.y + r1.height, r2.x, r2.y, r2.x + r2.width, r2.y + r2.height)) {
|
||||
intersects = false;
|
||||
var x1 = Math.min(r1.x, r2.x);
|
||||
var y1 = Math.min(r1.y, r2.y);
|
||||
var x2 = Math.max(r1.x + r1.width, r2.x + r2.width);
|
||||
var y2 = Math.max(r1.y + r1.height, r2.y + r2.height);
|
||||
r2.height = y2 - y1;
|
||||
r2.width = x2 - x1;
|
||||
r2.x = x1;
|
||||
r2.y = y1;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (intersects) {
|
||||
if (r1.width >= minDimension && r1.height >= minDimension) {
|
||||
if (r1.width <= maxDimension && r1.height <= maxDimension) {
|
||||
results.push(r1);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return results;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the colors to be tracked by the `ColorTracker` instance.
|
||||
* @param {Array.<string>} colors
|
||||
*/
|
||||
tracking.ColorTracker.prototype.setColors = function(colors) {
|
||||
this.colors = colors;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the minimum dimension to classify a rectangle.
|
||||
* @param {number} minDimension
|
||||
*/
|
||||
tracking.ColorTracker.prototype.setMinDimension = function(minDimension) {
|
||||
this.minDimension = minDimension;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the maximum dimension to classify a rectangle.
|
||||
* @param {number} maxDimension
|
||||
*/
|
||||
tracking.ColorTracker.prototype.setMaxDimension = function(maxDimension) {
|
||||
this.maxDimension = maxDimension;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the minimum group size to be classified as a rectangle.
|
||||
* @param {number} minGroupSize
|
||||
*/
|
||||
tracking.ColorTracker.prototype.setMinGroupSize = function(minGroupSize) {
|
||||
this.minGroupSize = minGroupSize;
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks the `Video` frames. This method is called for each video frame in
|
||||
* order to emit `track` event.
|
||||
* @param {Uint8ClampedArray} pixels The pixels data to track.
|
||||
* @param {number} width The pixels canvas width.
|
||||
* @param {number} height The pixels canvas height.
|
||||
*/
|
||||
tracking.ColorTracker.prototype.track = function(pixels, width, height) {
|
||||
var self = this;
|
||||
var colors = this.getColors();
|
||||
|
||||
if (!colors) {
|
||||
throw new Error('Colors not specified, try `new tracking.ColorTracker("magenta")`.');
|
||||
}
|
||||
|
||||
var results = [];
|
||||
|
||||
colors.forEach(function(color) {
|
||||
results = results.concat(self.trackColor_(pixels, width, height, color));
|
||||
});
|
||||
|
||||
this.emit('track', {
|
||||
data: results
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* Find the given color in the given matrix of pixels using Flood fill
|
||||
* algorithm to determines the area connected to a given node in a
|
||||
* multi-dimensional array.
|
||||
* @param {Uint8ClampedArray} pixels The pixels data to track.
|
||||
* @param {number} width The pixels canvas width.
|
||||
* @param {number} height The pixels canvas height.
|
||||
* @param {string} color The color to be found
|
||||
* @private
|
||||
*/
|
||||
tracking.ColorTracker.prototype.trackColor_ = function(pixels, width, height, color) {
|
||||
var colorFn = tracking.ColorTracker.knownColors_[color];
|
||||
var currGroup = new Int32Array(pixels.length >> 2);
|
||||
var currGroupSize;
|
||||
var currI;
|
||||
var currJ;
|
||||
var currW;
|
||||
var marked = new Int8Array(pixels.length);
|
||||
var minGroupSize = this.getMinGroupSize();
|
||||
var neighboursW = this.getNeighboursForWidth_(width);
|
||||
var queue = new Int32Array(pixels.length);
|
||||
var queuePosition;
|
||||
var results = [];
|
||||
var w = -4;
|
||||
|
||||
if (!colorFn) {
|
||||
return results;
|
||||
}
|
||||
|
||||
for (var i = 0; i < height; i++) {
|
||||
for (var j = 0; j < width; j++) {
|
||||
w += 4;
|
||||
|
||||
if (marked[w]) {
|
||||
continue;
|
||||
}
|
||||
|
||||
currGroupSize = 0;
|
||||
|
||||
queuePosition = -1;
|
||||
queue[++queuePosition] = w;
|
||||
queue[++queuePosition] = i;
|
||||
queue[++queuePosition] = j;
|
||||
|
||||
marked[w] = 1;
|
||||
|
||||
while (queuePosition >= 0) {
|
||||
currJ = queue[queuePosition--];
|
||||
currI = queue[queuePosition--];
|
||||
currW = queue[queuePosition--];
|
||||
|
||||
if (colorFn(pixels[currW], pixels[currW + 1], pixels[currW + 2], pixels[currW + 3], currW, currI, currJ)) {
|
||||
currGroup[currGroupSize++] = currJ;
|
||||
currGroup[currGroupSize++] = currI;
|
||||
|
||||
for (var k = 0; k < neighboursW.length; k++) {
|
||||
var otherW = currW + neighboursW[k];
|
||||
var otherI = currI + neighboursI[k];
|
||||
var otherJ = currJ + neighboursJ[k];
|
||||
if (!marked[otherW] && otherI >= 0 && otherI < height && otherJ >= 0 && otherJ < width) {
|
||||
queue[++queuePosition] = otherW;
|
||||
queue[++queuePosition] = otherI;
|
||||
queue[++queuePosition] = otherJ;
|
||||
|
||||
marked[otherW] = 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (currGroupSize >= minGroupSize) {
|
||||
var data = this.calculateDimensions_(currGroup, currGroupSize);
|
||||
if (data) {
|
||||
data.color = color;
|
||||
results.push(data);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return this.mergeRectangles_(results);
|
||||
};
|
||||
|
||||
// Default colors
|
||||
//===================
|
||||
|
||||
tracking.ColorTracker.registerColor('cyan', function(r, g, b) {
|
||||
var thresholdGreen = 50,
|
||||
thresholdBlue = 70,
|
||||
dx = r - 0,
|
||||
dy = g - 255,
|
||||
dz = b - 255;
|
||||
|
||||
if ((g - r) >= thresholdGreen && (b - r) >= thresholdBlue) {
|
||||
return true;
|
||||
}
|
||||
return dx * dx + dy * dy + dz * dz < 6400;
|
||||
});
|
||||
|
||||
tracking.ColorTracker.registerColor('magenta', function(r, g, b) {
|
||||
var threshold = 50,
|
||||
dx = r - 255,
|
||||
dy = g - 0,
|
||||
dz = b - 255;
|
||||
|
||||
if ((r - g) >= threshold && (b - g) >= threshold) {
|
||||
return true;
|
||||
}
|
||||
return dx * dx + dy * dy + dz * dz < 19600;
|
||||
});
|
||||
|
||||
tracking.ColorTracker.registerColor('yellow', function(r, g, b) {
|
||||
var threshold = 50,
|
||||
dx = r - 255,
|
||||
dy = g - 255,
|
||||
dz = b - 0;
|
||||
|
||||
if ((r - b) >= threshold && (g - b) >= threshold) {
|
||||
return true;
|
||||
}
|
||||
return dx * dx + dy * dy + dz * dz < 10000;
|
||||
});
|
||||
|
||||
|
||||
// Caching neighbour i/j offset values.
|
||||
//=====================================
|
||||
var neighboursI = new Int32Array([-1, -1, 0, 1, 1, 1, 0, -1]);
|
||||
var neighboursJ = new Int32Array([0, 1, 1, 1, 0, -1, -1, -1]);
|
||||
}());
|
|
@ -0,0 +1,35 @@
|
|||
(function() {
|
||||
|
||||
|
||||
tracking.LandmarksTracker = function() {
|
||||
tracking.LandmarksTracker.base(this, 'constructor');
|
||||
}
|
||||
|
||||
tracking.inherits(tracking.LandmarksTracker, tracking.ObjectTracker);
|
||||
|
||||
tracking.LandmarksTracker.prototype.track = function(pixels, width, height) {
|
||||
|
||||
var image = {
|
||||
'data': pixels,
|
||||
'width': width,
|
||||
'height': height
|
||||
};
|
||||
|
||||
var classifier = tracking.ViolaJones.classifiers['face'];
|
||||
|
||||
var faces = tracking.ViolaJones.detect(pixels, width, height,
|
||||
this.getInitialScale(), this.getScaleFactor(), this.getStepSize(),
|
||||
this.getEdgesDensity(), classifier);
|
||||
|
||||
var landmarks = tracking.LBF.align(pixels, width, height, faces);
|
||||
|
||||
this.emit('track', {
|
||||
'data': {
|
||||
'faces' : faces,
|
||||
'landmarks' : landmarks
|
||||
}
|
||||
});
|
||||
|
||||
}
|
||||
|
||||
}());
|
|
@ -0,0 +1,169 @@
|
|||
(function() {
|
||||
/**
|
||||
* ObjectTracker utility.
|
||||
* @constructor
|
||||
* @param {string|Array.<string|Array.<number>>} opt_classifiers Optional
|
||||
* object classifiers to track.
|
||||
* @extends {tracking.Tracker}
|
||||
*/
|
||||
tracking.ObjectTracker = function(opt_classifiers) {
|
||||
tracking.ObjectTracker.base(this, 'constructor');
|
||||
|
||||
if (opt_classifiers) {
|
||||
if (!Array.isArray(opt_classifiers)) {
|
||||
opt_classifiers = [opt_classifiers];
|
||||
}
|
||||
|
||||
if (Array.isArray(opt_classifiers)) {
|
||||
opt_classifiers.forEach(function(classifier, i) {
|
||||
if (typeof classifier === 'string') {
|
||||
opt_classifiers[i] = tracking.ViolaJones.classifiers[classifier];
|
||||
}
|
||||
if (!opt_classifiers[i]) {
|
||||
throw new Error('Object classifier not valid, try `new tracking.ObjectTracker("face")`.');
|
||||
}
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
this.setClassifiers(opt_classifiers);
|
||||
};
|
||||
|
||||
tracking.inherits(tracking.ObjectTracker, tracking.Tracker);
|
||||
|
||||
/**
|
||||
* Specifies the edges density of a block in order to decide whether to skip
|
||||
* it or not.
|
||||
* @default 0.2
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.edgesDensity = 0.2;
|
||||
|
||||
/**
|
||||
* Specifies the initial scale to start the feature block scaling.
|
||||
* @default 1.0
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.initialScale = 1.0;
|
||||
|
||||
/**
|
||||
* Specifies the scale factor to scale the feature block.
|
||||
* @default 1.25
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.scaleFactor = 1.25;
|
||||
|
||||
/**
|
||||
* Specifies the block step size.
|
||||
* @default 1.5
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.stepSize = 1.5;
|
||||
|
||||
/**
|
||||
* Gets the tracker HAAR classifiers.
|
||||
* @return {TypedArray.<number>}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.getClassifiers = function() {
|
||||
return this.classifiers;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the edges density value.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.getEdgesDensity = function() {
|
||||
return this.edgesDensity;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the initial scale to start the feature block scaling.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.getInitialScale = function() {
|
||||
return this.initialScale;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the scale factor to scale the feature block.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.getScaleFactor = function() {
|
||||
return this.scaleFactor;
|
||||
};
|
||||
|
||||
/**
|
||||
* Gets the block step size.
|
||||
* @return {number}
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.getStepSize = function() {
|
||||
return this.stepSize;
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks the `Video` frames. This method is called for each video frame in
|
||||
* order to emit `track` event.
|
||||
* @param {Uint8ClampedArray} pixels The pixels data to track.
|
||||
* @param {number} width The pixels canvas width.
|
||||
* @param {number} height The pixels canvas height.
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.track = function(pixels, width, height) {
|
||||
var self = this;
|
||||
var classifiers = this.getClassifiers();
|
||||
|
||||
if (!classifiers) {
|
||||
throw new Error('Object classifier not specified, try `new tracking.ObjectTracker("face")`.');
|
||||
}
|
||||
|
||||
var results = [];
|
||||
|
||||
classifiers.forEach(function(classifier) {
|
||||
results = results.concat(tracking.ViolaJones.detect(pixels, width, height, self.getInitialScale(), self.getScaleFactor(), self.getStepSize(), self.getEdgesDensity(), classifier));
|
||||
});
|
||||
|
||||
this.emit('track', {
|
||||
data: results
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the tracker HAAR classifiers.
|
||||
* @param {TypedArray.<number>} classifiers
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.setClassifiers = function(classifiers) {
|
||||
this.classifiers = classifiers;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the edges density.
|
||||
* @param {number} edgesDensity
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.setEdgesDensity = function(edgesDensity) {
|
||||
this.edgesDensity = edgesDensity;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the initial scale to start the block scaling.
|
||||
* @param {number} initialScale
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.setInitialScale = function(initialScale) {
|
||||
this.initialScale = initialScale;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the scale factor to scale the feature block.
|
||||
* @param {number} scaleFactor
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.setScaleFactor = function(scaleFactor) {
|
||||
this.scaleFactor = scaleFactor;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the block step size.
|
||||
* @param {number} stepSize
|
||||
*/
|
||||
tracking.ObjectTracker.prototype.setStepSize = function(stepSize) {
|
||||
this.stepSize = stepSize;
|
||||
};
|
||||
|
||||
}());
|
|
@ -0,0 +1,21 @@
|
|||
(function() {
|
||||
/**
|
||||
* Tracker utility.
|
||||
* @constructor
|
||||
* @extends {tracking.EventEmitter}
|
||||
*/
|
||||
tracking.Tracker = function() {
|
||||
tracking.Tracker.base(this, 'constructor');
|
||||
};
|
||||
|
||||
tracking.inherits(tracking.Tracker, tracking.EventEmitter);
|
||||
|
||||
/**
|
||||
* Tracks the pixels on the array. This method is called for each video
|
||||
* frame in order to emit `track` event.
|
||||
* @param {Uint8ClampedArray} pixels The pixels data to track.
|
||||
* @param {number} width The pixels canvas width.
|
||||
* @param {number} height The pixels canvas height.
|
||||
*/
|
||||
tracking.Tracker.prototype.track = function() {};
|
||||
}());
|
|
@ -0,0 +1,103 @@
|
|||
(function() {
|
||||
/**
|
||||
* TrackerTask utility.
|
||||
* @constructor
|
||||
* @extends {tracking.EventEmitter}
|
||||
*/
|
||||
tracking.TrackerTask = function(tracker) {
|
||||
tracking.TrackerTask.base(this, 'constructor');
|
||||
|
||||
if (!tracker) {
|
||||
throw new Error('Tracker instance not specified.');
|
||||
}
|
||||
|
||||
this.setTracker(tracker);
|
||||
};
|
||||
|
||||
tracking.inherits(tracking.TrackerTask, tracking.EventEmitter);
|
||||
|
||||
/**
|
||||
* Holds the tracker instance managed by this task.
|
||||
* @type {tracking.Tracker}
|
||||
* @private
|
||||
*/
|
||||
tracking.TrackerTask.prototype.tracker_ = null;
|
||||
|
||||
/**
|
||||
* Holds if the tracker task is in running.
|
||||
* @type {boolean}
|
||||
* @private
|
||||
*/
|
||||
tracking.TrackerTask.prototype.running_ = false;
|
||||
|
||||
/**
|
||||
* Gets the tracker instance managed by this task.
|
||||
* @return {tracking.Tracker}
|
||||
*/
|
||||
tracking.TrackerTask.prototype.getTracker = function() {
|
||||
return this.tracker_;
|
||||
};
|
||||
|
||||
/**
|
||||
* Returns true if the tracker task is in running, false otherwise.
|
||||
* @return {boolean}
|
||||
* @private
|
||||
*/
|
||||
tracking.TrackerTask.prototype.inRunning = function() {
|
||||
return this.running_;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets if the tracker task is in running.
|
||||
* @param {boolean} running
|
||||
* @private
|
||||
*/
|
||||
tracking.TrackerTask.prototype.setRunning = function(running) {
|
||||
this.running_ = running;
|
||||
};
|
||||
|
||||
/**
|
||||
* Sets the tracker instance managed by this task.
|
||||
* @return {tracking.Tracker}
|
||||
*/
|
||||
tracking.TrackerTask.prototype.setTracker = function(tracker) {
|
||||
this.tracker_ = tracker;
|
||||
};
|
||||
|
||||
/**
|
||||
* Emits a `run` event on the tracker task for the implementers to run any
|
||||
* child action, e.g. `requestAnimationFrame`.
|
||||
* @return {object} Returns itself, so calls can be chained.
|
||||
*/
|
||||
tracking.TrackerTask.prototype.run = function() {
|
||||
var self = this;
|
||||
|
||||
if (this.inRunning()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this.setRunning(true);
|
||||
this.reemitTrackEvent_ = function(event) {
|
||||
self.emit('track', event);
|
||||
};
|
||||
this.tracker_.on('track', this.reemitTrackEvent_);
|
||||
this.emit('run');
|
||||
return this;
|
||||
};
|
||||
|
||||
/**
|
||||
* Emits a `stop` event on the tracker task for the implementers to stop any
|
||||
* child action being done, e.g. `requestAnimationFrame`.
|
||||
* @return {object} Returns itself, so calls can be chained.
|
||||
*/
|
||||
tracking.TrackerTask.prototype.stop = function() {
|
||||
if (!this.inRunning()) {
|
||||
return;
|
||||
}
|
||||
|
||||
this.setRunning(false);
|
||||
this.emit('stop');
|
||||
this.tracker_.removeListener('track', this.reemitTrackEvent_);
|
||||
return this;
|
||||
};
|
||||
}());
|
|
@ -0,0 +1,285 @@
|
|||
(function(window, undefined) {
|
||||
window.tracking = window.tracking || {};
|
||||
|
||||
/**
|
||||
* Inherit the prototype methods from one constructor into another.
|
||||
*
|
||||
* Usage:
|
||||
* <pre>
|
||||
* function ParentClass(a, b) { }
|
||||
* ParentClass.prototype.foo = function(a) { }
|
||||
*
|
||||
* function ChildClass(a, b, c) {
|
||||
* tracking.base(this, a, b);
|
||||
* }
|
||||
* tracking.inherits(ChildClass, ParentClass);
|
||||
*
|
||||
* var child = new ChildClass('a', 'b', 'c');
|
||||
* child.foo();
|
||||
* </pre>
|
||||
*
|
||||
* @param {Function} childCtor Child class.
|
||||
* @param {Function} parentCtor Parent class.
|
||||
*/
|
||||
tracking.inherits = function(childCtor, parentCtor) {
|
||||
function TempCtor() {
|
||||
}
|
||||
TempCtor.prototype = parentCtor.prototype;
|
||||
childCtor.superClass_ = parentCtor.prototype;
|
||||
childCtor.prototype = new TempCtor();
|
||||
childCtor.prototype.constructor = childCtor;
|
||||
|
||||
/**
|
||||
* Calls superclass constructor/method.
|
||||
*
|
||||
* This function is only available if you use tracking.inherits to express
|
||||
* inheritance relationships between classes.
|
||||
*
|
||||
* @param {!object} me Should always be "this".
|
||||
* @param {string} methodName The method name to call. Calling superclass
|
||||
* constructor can be done with the special string 'constructor'.
|
||||
* @param {...*} var_args The arguments to pass to superclass
|
||||
* method/constructor.
|
||||
* @return {*} The return value of the superclass method/constructor.
|
||||
*/
|
||||
childCtor.base = function(me, methodName) {
|
||||
var args = Array.prototype.slice.call(arguments, 2);
|
||||
return parentCtor.prototype[methodName].apply(me, args);
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Captures the user camera when tracking a video element and set its source
|
||||
* to the camera stream.
|
||||
* @param {HTMLVideoElement} element Canvas element to track.
|
||||
* @param {object} opt_options Optional configuration to the tracker.
|
||||
*/
|
||||
tracking.initUserMedia_ = function(element, opt_options) {
|
||||
window.navigator.mediaDevices.getUserMedia({
|
||||
video: true,
|
||||
audio: (opt_options && opt_options.audio) ? true : false,
|
||||
}).then(function(stream) {
|
||||
element.srcObject = stream;
|
||||
}).catch(function(err) {
|
||||
throw Error('Cannot capture user camera.');
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* Tests whether the object is a dom node.
|
||||
* @param {object} o Object to be tested.
|
||||
* @return {boolean} True if the object is a dom node.
|
||||
*/
|
||||
tracking.isNode = function(o) {
|
||||
return o.nodeType || this.isWindow(o);
|
||||
};
|
||||
|
||||
/**
|
||||
* Tests whether the object is the `window` object.
|
||||
* @param {object} o Object to be tested.
|
||||
* @return {boolean} True if the object is the `window` object.
|
||||
*/
|
||||
tracking.isWindow = function(o) {
|
||||
return !!(o && o.alert && o.document);
|
||||
};
|
||||
|
||||
/**
|
||||
* Selects a dom node from a CSS3 selector using `document.querySelector`.
|
||||
* @param {string} selector
|
||||
* @param {object} opt_element The root element for the query. When not
|
||||
* specified `document` is used as root element.
|
||||
* @return {HTMLElement} The first dom element that matches to the selector.
|
||||
* If not found, returns `null`.
|
||||
*/
|
||||
tracking.one = function(selector, opt_element) {
|
||||
if (this.isNode(selector)) {
|
||||
return selector;
|
||||
}
|
||||
return (opt_element || document).querySelector(selector);
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks a canvas, image or video element based on the specified `tracker`
|
||||
* instance. This method extract the pixel information of the input element
|
||||
* to pass to the `tracker` instance. When tracking a video, the
|
||||
* `tracker.track(pixels, width, height)` will be in a
|
||||
* `requestAnimationFrame` loop in order to track all video frames.
|
||||
*
|
||||
* Example:
|
||||
* var tracker = new tracking.ColorTracker();
|
||||
*
|
||||
* tracking.track('#video', tracker);
|
||||
* or
|
||||
* tracking.track('#video', tracker, { camera: true });
|
||||
*
|
||||
* tracker.on('track', function(event) {
|
||||
* // console.log(event.data[0].x, event.data[0].y)
|
||||
* });
|
||||
*
|
||||
* @param {HTMLElement} element The element to track, canvas, image or
|
||||
* video.
|
||||
* @param {tracking.Tracker} tracker The tracker instance used to track the
|
||||
* element.
|
||||
* @param {object} opt_options Optional configuration to the tracker.
|
||||
*/
|
||||
tracking.track = function(element, tracker, opt_options) {
|
||||
element = tracking.one(element);
|
||||
if (!element) {
|
||||
throw new Error('Element not found, try a different element or selector.');
|
||||
}
|
||||
if (!tracker) {
|
||||
throw new Error('Tracker not specified, try `tracking.track(element, new tracking.FaceTracker())`.');
|
||||
}
|
||||
|
||||
switch (element.nodeName.toLowerCase()) {
|
||||
case 'canvas':
|
||||
return this.trackCanvas_(element, tracker, opt_options);
|
||||
case 'img':
|
||||
return this.trackImg_(element, tracker, opt_options);
|
||||
case 'video':
|
||||
if (opt_options) {
|
||||
if (opt_options.camera) {
|
||||
this.initUserMedia_(element, opt_options);
|
||||
}
|
||||
}
|
||||
return this.trackVideo_(element, tracker, opt_options);
|
||||
default:
|
||||
throw new Error('Element not supported, try in a canvas, img, or video.');
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks a canvas element based on the specified `tracker` instance and
|
||||
* returns a `TrackerTask` for this track.
|
||||
* @param {HTMLCanvasElement} element Canvas element to track.
|
||||
* @param {tracking.Tracker} tracker The tracker instance used to track the
|
||||
* element.
|
||||
* @param {object} opt_options Optional configuration to the tracker.
|
||||
* @return {tracking.TrackerTask}
|
||||
* @private
|
||||
*/
|
||||
tracking.trackCanvas_ = function(element, tracker) {
|
||||
var self = this;
|
||||
var task = new tracking.TrackerTask(tracker);
|
||||
task.on('run', function() {
|
||||
self.trackCanvasInternal_(element, tracker);
|
||||
});
|
||||
return task.run();
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks a canvas element based on the specified `tracker` instance. This
|
||||
* method extract the pixel information of the input element to pass to the
|
||||
* `tracker` instance.
|
||||
* @param {HTMLCanvasElement} element Canvas element to track.
|
||||
* @param {tracking.Tracker} tracker The tracker instance used to track the
|
||||
* element.
|
||||
* @param {object} opt_options Optional configuration to the tracker.
|
||||
* @private
|
||||
*/
|
||||
tracking.trackCanvasInternal_ = function(element, tracker) {
|
||||
var width = element.width;
|
||||
var height = element.height;
|
||||
var context = element.getContext('2d');
|
||||
var imageData = context.getImageData(0, 0, width, height);
|
||||
tracker.track(imageData.data, width, height);
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks a image element based on the specified `tracker` instance. This
|
||||
* method extract the pixel information of the input element to pass to the
|
||||
* `tracker` instance.
|
||||
* @param {HTMLImageElement} element Canvas element to track.
|
||||
* @param {tracking.Tracker} tracker The tracker instance used to track the
|
||||
* element.
|
||||
* @param {object} opt_options Optional configuration to the tracker.
|
||||
* @private
|
||||
*/
|
||||
tracking.trackImg_ = function(element, tracker) {
|
||||
var width = element.naturalWidth;
|
||||
var height = element.naturalHeight;
|
||||
var canvas = document.createElement('canvas');
|
||||
|
||||
canvas.width = width;
|
||||
canvas.height = height;
|
||||
|
||||
var task = new tracking.TrackerTask(tracker);
|
||||
task.on('run', function() {
|
||||
tracking.Canvas.loadImage(canvas, element.src, 0, 0, width, height, function() {
|
||||
tracking.trackCanvasInternal_(canvas, tracker);
|
||||
});
|
||||
});
|
||||
return task.run();
|
||||
};
|
||||
|
||||
/**
|
||||
* Tracks a video element based on the specified `tracker` instance. This
|
||||
* method extract the pixel information of the input element to pass to the
|
||||
* `tracker` instance. The `tracker.track(pixels, width, height)` will be in
|
||||
* a `requestAnimationFrame` loop in order to track all video frames.
|
||||
* @param {HTMLVideoElement} element Canvas element to track.
|
||||
* @param {tracking.Tracker} tracker The tracker instance used to track the
|
||||
* element.
|
||||
* @param {object} opt_options Optional configuration to the tracker.
|
||||
* @private
|
||||
*/
|
||||
tracking.trackVideo_ = function(element, tracker) {
|
||||
var canvas = document.createElement('canvas');
|
||||
var context = canvas.getContext('2d');
|
||||
var width;
|
||||
var height;
|
||||
|
||||
|
||||
// FIXME here the video display size of the analysed size
|
||||
var resizeCanvas_ = function() {
|
||||
width = element.offsetWidth;
|
||||
height = element.offsetHeight;
|
||||
canvas.width = width;
|
||||
canvas.height = height;
|
||||
};
|
||||
resizeCanvas_();
|
||||
element.addEventListener('resize', resizeCanvas_);
|
||||
|
||||
|
||||
// FIXME: do a process function - it is up to the caller to handle the frequency of detection
|
||||
// it seems all handled in the tracking.TrackerTask..
|
||||
// so in short, remove the tracking.TrackerTask from here
|
||||
// if the user want to use it, it can create it himself
|
||||
var requestId;
|
||||
var requestAnimationFrame_ = function() {
|
||||
requestId = window.requestAnimationFrame(function() {
|
||||
if (element.readyState === element.HAVE_ENOUGH_DATA) {
|
||||
try {
|
||||
// Firefox v~30.0 gets confused with the video readyState firing an
|
||||
// erroneous HAVE_ENOUGH_DATA just before HAVE_CURRENT_DATA state,
|
||||
// hence keep trying to read it until resolved.
|
||||
context.drawImage(element, 0, 0, width, height);
|
||||
} catch (err) {}
|
||||
tracking.trackCanvasInternal_(canvas, tracker);
|
||||
}
|
||||
requestAnimationFrame_();
|
||||
});
|
||||
};
|
||||
|
||||
var task = new tracking.TrackerTask(tracker);
|
||||
task.on('stop', function() {
|
||||
window.cancelAnimationFrame(requestId);
|
||||
});
|
||||
task.on('run', function() {
|
||||
requestAnimationFrame_();
|
||||
});
|
||||
return task.run();
|
||||
};
|
||||
|
||||
// Browser polyfills
|
||||
//===================
|
||||
|
||||
if (!window.URL) {
|
||||
window.URL = window.URL || window.webkitURL || window.msURL || window.oURL;
|
||||
}
|
||||
|
||||
if (!navigator.getUserMedia) {
|
||||
navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia ||
|
||||
navigator.mozGetUserMedia || navigator.msGetUserMedia;
|
||||
}
|
||||
}(window));
|
|
@ -0,0 +1,37 @@
|
|||
(function() {
|
||||
/**
|
||||
* Canvas utility.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.Canvas = {};
|
||||
|
||||
/**
|
||||
* Loads an image source into the canvas.
|
||||
* @param {HTMLCanvasElement} canvas The canvas dom element.
|
||||
* @param {string} src The image source.
|
||||
* @param {number} x The canvas horizontal coordinate to load the image.
|
||||
* @param {number} y The canvas vertical coordinate to load the image.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {function} opt_callback Callback that fires when the image is loaded
|
||||
* into the canvas.
|
||||
* @static
|
||||
*/
|
||||
tracking.Canvas.loadImage = function(canvas, src, x, y, width, height, opt_callback) {
|
||||
var instance = this;
|
||||
var img = new window.Image();
|
||||
img.crossOrigin = '*';
|
||||
img.onload = function() {
|
||||
var context = canvas.getContext('2d');
|
||||
canvas.width = width;
|
||||
canvas.height = height;
|
||||
context.drawImage(img, x, y, width, height);
|
||||
if (opt_callback) {
|
||||
opt_callback.call(instance);
|
||||
}
|
||||
img = null;
|
||||
};
|
||||
img.src = src;
|
||||
};
|
||||
}());
|
|
@ -0,0 +1,60 @@
|
|||
(function() {
|
||||
/**
|
||||
* DisjointSet utility with path compression. Some applications involve
|
||||
* grouping n distinct objects into a collection of disjoint sets. Two
|
||||
* important operations are then finding which set a given object belongs to
|
||||
* and uniting the two sets. A disjoint set data structure maintains a
|
||||
* collection S={ S1 , S2 ,..., Sk } of disjoint dynamic sets. Each set is
|
||||
* identified by a representative, which usually is a member in the set.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.DisjointSet = function(length) {
|
||||
if (length === undefined) {
|
||||
throw new Error('DisjointSet length not specified.');
|
||||
}
|
||||
this.length = length;
|
||||
this.parent = new Uint32Array(length);
|
||||
for (var i = 0; i < length; i++) {
|
||||
this.parent[i] = i;
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Holds the length of the internal set.
|
||||
* @type {number}
|
||||
*/
|
||||
tracking.DisjointSet.prototype.length = null;
|
||||
|
||||
/**
|
||||
* Holds the set containing the representative values.
|
||||
* @type {Array.<number>}
|
||||
*/
|
||||
tracking.DisjointSet.prototype.parent = null;
|
||||
|
||||
/**
|
||||
* Finds a pointer to the representative of the set containing i.
|
||||
* @param {number} i
|
||||
* @return {number} The representative set of i.
|
||||
*/
|
||||
tracking.DisjointSet.prototype.find = function(i) {
|
||||
if (this.parent[i] === i) {
|
||||
return i;
|
||||
} else {
|
||||
return (this.parent[i] = this.find(this.parent[i]));
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Unites two dynamic sets containing objects i and j, say Si and Sj, into
|
||||
* a new set that Si ∪ Sj, assuming that Si ∩ Sj = ∅;
|
||||
* @param {number} i
|
||||
* @param {number} j
|
||||
*/
|
||||
tracking.DisjointSet.prototype.union = function(i, j) {
|
||||
var iRepresentative = this.find(i);
|
||||
var jRepresentative = this.find(j);
|
||||
this.parent[iRepresentative] = jRepresentative;
|
||||
};
|
||||
|
||||
}());
|
|
@ -0,0 +1,149 @@
|
|||
(function() {
|
||||
/**
|
||||
* EventEmitter utility.
|
||||
* @constructor
|
||||
*/
|
||||
tracking.EventEmitter = function() {};
|
||||
|
||||
/**
|
||||
* Holds event listeners scoped by event type.
|
||||
* @type {object}
|
||||
* @private
|
||||
*/
|
||||
tracking.EventEmitter.prototype.events_ = null;
|
||||
|
||||
/**
|
||||
* Adds a listener to the end of the listeners array for the specified event.
|
||||
* @param {string} event
|
||||
* @param {function} listener
|
||||
* @return {object} Returns emitter, so calls can be chained.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.addListener = function(event, listener) {
|
||||
if (typeof listener !== 'function') {
|
||||
throw new TypeError('Listener must be a function');
|
||||
}
|
||||
if (!this.events_) {
|
||||
this.events_ = {};
|
||||
}
|
||||
|
||||
this.emit('newListener', event, listener);
|
||||
|
||||
if (!this.events_[event]) {
|
||||
this.events_[event] = [];
|
||||
}
|
||||
|
||||
this.events_[event].push(listener);
|
||||
|
||||
return this;
|
||||
};
|
||||
|
||||
/**
|
||||
* Returns an array of listeners for the specified event.
|
||||
* @param {string} event
|
||||
* @return {array} Array of listeners.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.listeners = function(event) {
|
||||
return this.events_ && this.events_[event];
|
||||
};
|
||||
|
||||
/**
|
||||
* Execute each of the listeners in order with the supplied arguments.
|
||||
* @param {string} event
|
||||
* @param {*} opt_args [arg1], [arg2], [...]
|
||||
* @return {boolean} Returns true if event had listeners, false otherwise.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.emit = function(event) {
|
||||
var listeners = this.listeners(event);
|
||||
if (listeners) {
|
||||
var args = Array.prototype.slice.call(arguments, 1);
|
||||
for (var i = 0; i < listeners.length; i++) {
|
||||
if (listeners[i]) {
|
||||
listeners[i].apply(this, args);
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
};
|
||||
|
||||
/**
|
||||
* Adds a listener to the end of the listeners array for the specified event.
|
||||
* @param {string} event
|
||||
* @param {function} listener
|
||||
* @return {object} Returns emitter, so calls can be chained.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.on = tracking.EventEmitter.prototype.addListener;
|
||||
|
||||
/**
|
||||
* Adds a one time listener for the event. This listener is invoked only the
|
||||
* next time the event is fired, after which it is removed.
|
||||
* @param {string} event
|
||||
* @param {function} listener
|
||||
* @return {object} Returns emitter, so calls can be chained.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.once = function(event, listener) {
|
||||
var self = this;
|
||||
self.on(event, function handlerInternal() {
|
||||
self.removeListener(event, handlerInternal);
|
||||
listener.apply(this, arguments);
|
||||
});
|
||||
};
|
||||
|
||||
/**
|
||||
* Removes all listeners, or those of the specified event. It's not a good
|
||||
* idea to remove listeners that were added elsewhere in the code,
|
||||
* especially when it's on an emitter that you didn't create.
|
||||
* @param {string} event
|
||||
* @return {object} Returns emitter, so calls can be chained.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.removeAllListeners = function(opt_event) {
|
||||
if (!this.events_) {
|
||||
return this;
|
||||
}
|
||||
if (opt_event) {
|
||||
delete this.events_[opt_event];
|
||||
} else {
|
||||
delete this.events_;
|
||||
}
|
||||
return this;
|
||||
};
|
||||
|
||||
/**
|
||||
* Remove a listener from the listener array for the specified event.
|
||||
* Caution: changes array indices in the listener array behind the listener.
|
||||
* @param {string} event
|
||||
* @param {function} listener
|
||||
* @return {object} Returns emitter, so calls can be chained.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.removeListener = function(event, listener) {
|
||||
if (typeof listener !== 'function') {
|
||||
throw new TypeError('Listener must be a function');
|
||||
}
|
||||
if (!this.events_) {
|
||||
return this;
|
||||
}
|
||||
|
||||
var listeners = this.listeners(event);
|
||||
if (Array.isArray(listeners)) {
|
||||
var i = listeners.indexOf(listener);
|
||||
if (i < 0) {
|
||||
return this;
|
||||
}
|
||||
listeners.splice(i, 1);
|
||||
}
|
||||
|
||||
return this;
|
||||
};
|
||||
|
||||
/**
|
||||
* By default EventEmitters will print a warning if more than 10 listeners
|
||||
* are added for a particular event. This is a useful default which helps
|
||||
* finding memory leaks. Obviously not all Emitters should be limited to 10.
|
||||
* This function allows that to be increased. Set to zero for unlimited.
|
||||
* @param {number} n The maximum number of listeners.
|
||||
*/
|
||||
tracking.EventEmitter.prototype.setMaxListeners = function() {
|
||||
throw new Error('Not implemented');
|
||||
};
|
||||
|
||||
}());
|
|
@ -0,0 +1,392 @@
|
|||
(function() {
|
||||
/**
|
||||
* Image utility.
|
||||
* @static
|
||||
* @constructor
|
||||
*/
|
||||
tracking.Image = {};
|
||||
|
||||
/**
|
||||
* Computes gaussian blur. Adapted from
|
||||
* https://github.com/kig/canvasfilters.
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {number} diameter Gaussian blur diameter, must be greater than 1.
|
||||
* @return {array} The edge pixels in a linear [r,g,b,a,...] array.
|
||||
*/
|
||||
tracking.Image.blur = function(pixels, width, height, diameter) {
|
||||
diameter = Math.abs(diameter);
|
||||
if (diameter <= 1) {
|
||||
throw new Error('Diameter should be greater than 1.');
|
||||
}
|
||||
var radius = diameter / 2;
|
||||
var len = Math.ceil(diameter) + (1 - (Math.ceil(diameter) % 2));
|
||||
var weights = new Float32Array(len);
|
||||
var rho = (radius + 0.5) / 3;
|
||||
var rhoSq = rho * rho;
|
||||
var gaussianFactor = 1 / Math.sqrt(2 * Math.PI * rhoSq);
|
||||
var rhoFactor = -1 / (2 * rho * rho);
|
||||
var wsum = 0;
|
||||
var middle = Math.floor(len / 2);
|
||||
for (var i = 0; i < len; i++) {
|
||||
var x = i - middle;
|
||||
var gx = gaussianFactor * Math.exp(x * x * rhoFactor);
|
||||
weights[i] = gx;
|
||||
wsum += gx;
|
||||
}
|
||||
for (var j = 0; j < weights.length; j++) {
|
||||
weights[j] /= wsum;
|
||||
}
|
||||
return this.separableConvolve(pixels, width, height, weights, weights, false);
|
||||
};
|
||||
|
||||
/**
|
||||
* Computes the integral image for summed, squared, rotated and sobel pixels.
|
||||
* @param {array} pixels The pixels in a linear [r,g,b,a,...] array to loop
|
||||
* through.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {array} opt_integralImage Empty array of size `width * height` to
|
||||
* be filled with the integral image values. If not specified compute sum
|
||||
* values will be skipped.
|
||||
* @param {array} opt_integralImageSquare Empty array of size `width *
|
||||
* height` to be filled with the integral image squared values. If not
|
||||
* specified compute squared values will be skipped.
|
||||
* @param {array} opt_tiltedIntegralImage Empty array of size `width *
|
||||
* height` to be filled with the rotated integral image values. If not
|
||||
* specified compute sum values will be skipped.
|
||||
* @param {array} opt_integralImageSobel Empty array of size `width *
|
||||
* height` to be filled with the integral image of sobel values. If not
|
||||
* specified compute sobel filtering will be skipped.
|
||||
* @static
|
||||
*/
|
||||
tracking.Image.computeIntegralImage = function(pixels, width, height, opt_integralImage, opt_integralImageSquare, opt_tiltedIntegralImage, opt_integralImageSobel) {
|
||||
if (arguments.length < 4) {
|
||||
throw new Error('You should specify at least one output array in the order: sum, square, tilted, sobel.');
|
||||
}
|
||||
var pixelsSobel;
|
||||
if (opt_integralImageSobel) {
|
||||
pixelsSobel = tracking.Image.sobel(pixels, width, height);
|
||||
}
|
||||
for (var i = 0; i < height; i++) {
|
||||
for (var j = 0; j < width; j++) {
|
||||
var w = i * width * 4 + j * 4;
|
||||
var pixel = ~~(pixels[w] * 0.299 + pixels[w + 1] * 0.587 + pixels[w + 2] * 0.114);
|
||||
if (opt_integralImage) {
|
||||
this.computePixelValueSAT_(opt_integralImage, width, i, j, pixel);
|
||||
}
|
||||
if (opt_integralImageSquare) {
|
||||
this.computePixelValueSAT_(opt_integralImageSquare, width, i, j, pixel * pixel);
|
||||
}
|
||||
if (opt_tiltedIntegralImage) {
|
||||
var w1 = w - width * 4;
|
||||
var pixelAbove = ~~(pixels[w1] * 0.299 + pixels[w1 + 1] * 0.587 + pixels[w1 + 2] * 0.114);
|
||||
this.computePixelValueRSAT_(opt_tiltedIntegralImage, width, i, j, pixel, pixelAbove || 0);
|
||||
}
|
||||
if (opt_integralImageSobel) {
|
||||
this.computePixelValueSAT_(opt_integralImageSobel, width, i, j, pixelsSobel[w]);
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
/**
|
||||
* Helper method to compute the rotated summed area table (RSAT) by the
|
||||
* formula:
|
||||
*
|
||||
* RSAT(x, y) = RSAT(x-1, y-1) + RSAT(x+1, y-1) - RSAT(x, y-2) + I(x, y) + I(x, y-1)
|
||||
*
|
||||
* @param {number} width The image width.
|
||||
* @param {array} RSAT Empty array of size `width * height` to be filled with
|
||||
* the integral image values. If not specified compute sum values will be
|
||||
* skipped.
|
||||
* @param {number} i Vertical position of the pixel to be evaluated.
|
||||
* @param {number} j Horizontal position of the pixel to be evaluated.
|
||||
* @param {number} pixel Pixel value to be added to the integral image.
|
||||
* @static
|
||||
* @private
|
||||
*/
|
||||
tracking.Image.computePixelValueRSAT_ = function(RSAT, width, i, j, pixel, pixelAbove) {
|
||||
var w = i * width + j;
|
||||
RSAT[w] = (RSAT[w - width - 1] || 0) + (RSAT[w - width + 1] || 0) - (RSAT[w - width - width] || 0) + pixel + pixelAbove;
|
||||
};
|
||||
|
||||
/**
|
||||
* Helper method to compute the summed area table (SAT) by the formula:
|
||||
*
|
||||
* SAT(x, y) = SAT(x, y-1) + SAT(x-1, y) + I(x, y) - SAT(x-1, y-1)
|
||||
*
|
||||
* @param {number} width The image width.
|
||||
* @param {array} SAT Empty array of size `width * height` to be filled with
|
||||
* the integral image values. If not specified compute sum values will be
|
||||
* skipped.
|
||||
* @param {number} i Vertical position of the pixel to be evaluated.
|
||||
* @param {number} j Horizontal position of the pixel to be evaluated.
|
||||
* @param {number} pixel Pixel value to be added to the integral image.
|
||||
* @static
|
||||
* @private
|
||||
*/
|
||||
tracking.Image.computePixelValueSAT_ = function(SAT, width, i, j, pixel) {
|
||||
var w = i * width + j;
|
||||
SAT[w] = (SAT[w - width] || 0) + (SAT[w - 1] || 0) + pixel - (SAT[w - width - 1] || 0);
|
||||
};
|
||||
|
||||
/**
|
||||
* Converts a color from a color-space based on an RGB color model to a
|
||||
* grayscale representation of its luminance. The coefficients represent the
|
||||
* measured intensity perception of typical trichromat humans, in
|
||||
* particular, human vision is most sensitive to green and least sensitive
|
||||
* to blue.
|
||||
* @param {Uint8Array|Uint8ClampedArray|Array} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {boolean} fillRGBA If the result should fill all RGBA values with the gray scale
|
||||
* values, instead of returning a single value per pixel.
|
||||
* @return {Uint8Array} The grayscale pixels in a linear array ([p,p,p,a,...] if fillRGBA
|
||||
* is true and [p1, p2, p3, ...] if fillRGBA is false).
|
||||
* @static
|
||||
*/
|
||||
tracking.Image.grayscale = function(pixels, width, height, fillRGBA) {
|
||||
|
||||
/*
|
||||
Performance result (rough EST. - image size, CPU arch. will affect):
|
||||
https://jsperf.com/tracking-new-image-to-grayscale
|
||||
|
||||
Firefox v.60b:
|
||||
fillRGBA Gray only
|
||||
Old 11 551 OPs/sec
|
||||
New 3548 6487 OPs/sec
|
||||
---------------------------------
|
||||
322.5x 11.8x faster
|
||||
|
||||
Chrome v.67b:
|
||||
fillRGBA Gray only
|
||||
Old 291 489 OPs/sec
|
||||
New 6975 6635 OPs/sec
|
||||
---------------------------------
|
||||
24.0x 13.6x faster
|
||||
|
||||
- Ken Nilsen / epistemex
|
||||
*/
|
||||
|
||||
var len = pixels.length>>2;
|
||||
var gray = fillRGBA ? new Uint32Array(len) : new Uint8Array(len);
|
||||
var data32 = new Uint32Array(pixels.buffer || new Uint8Array(pixels).buffer);
|
||||
var i = 0;
|
||||
var c = 0;
|
||||
var luma = 0;
|
||||
|
||||
// unrolled loops to not have to check fillRGBA each iteration
|
||||
if (fillRGBA) {
|
||||
while(i < len) {
|
||||
// Entire pixel in little-endian order (ABGR)
|
||||
c = data32[i];
|
||||
|
||||
// Using the more up-to-date REC/BT.709 approx. weights for luma instead: [0.2126, 0.7152, 0.0722].
|
||||
// luma = ((c>>>16 & 0xff) * 0.2126 + (c>>>8 & 0xff) * 0.7152 + (c & 0xff) * 0.0722 + 0.5)|0;
|
||||
// But I'm using scaled integers here for speed (x 0xffff). This can be improved more using 2^n
|
||||
// close to the factors allowing for shift-ops (i.e. 4732 -> 4096 => .. (c&0xff) << 12 .. etc.)
|
||||
// if "accuracy" is not important (luma is anyway an visual approx.):
|
||||
luma = ((c>>>16&0xff) * 13933 + (c>>>8&0xff) * 46871 + (c&0xff) * 4732)>>>16;
|
||||
gray[i++] = luma * 0x10101 | c & 0xff000000;
|
||||
}
|
||||
}
|
||||
else {
|
||||
while(i < len) {
|
||||
c = data32[i];
|
||||
luma = ((c>>>16&0xff) * 13933 + (c>>>8&0xff) * 46871 + (c&0xff) * 4732)>>>16;
|
||||
// ideally, alpha should affect value here: value * (alpha/255) or with shift-ops for the above version
|
||||
gray[i++] = luma;
|
||||
}
|
||||
}
|
||||
|
||||
// Consolidate array view to byte component format independent of source view
|
||||
return new Uint8Array(gray.buffer);
|
||||
};
|
||||
|
||||
/**
|
||||
* Fast horizontal separable convolution. A point spread function (PSF) is
|
||||
* said to be separable if it can be broken into two one-dimensional
|
||||
* signals: a vertical and a horizontal projection. The convolution is
|
||||
* performed by sliding the kernel over the image, generally starting at the
|
||||
* top left corner, so as to move the kernel through all the positions where
|
||||
* the kernel fits entirely within the boundaries of the image. Adapted from
|
||||
* https://github.com/kig/canvasfilters.
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {array} weightsVector The weighting vector, e.g [-1,0,1].
|
||||
* @param {number} opaque
|
||||
* @return {array} The convoluted pixels in a linear [r,g,b,a,...] array.
|
||||
*/
|
||||
tracking.Image.horizontalConvolve = function(pixels, width, height, weightsVector, opaque) {
|
||||
var side = weightsVector.length;
|
||||
var halfSide = Math.floor(side / 2);
|
||||
var output = new Float32Array(width * height * 4);
|
||||
var alphaFac = opaque ? 1 : 0;
|
||||
|
||||
for (var y = 0; y < height; y++) {
|
||||
for (var x = 0; x < width; x++) {
|
||||
var sy = y;
|
||||
var sx = x;
|
||||
var offset = (y * width + x) * 4;
|
||||
var r = 0;
|
||||
var g = 0;
|
||||
var b = 0;
|
||||
var a = 0;
|
||||
for (var cx = 0; cx < side; cx++) {
|
||||
var scy = sy;
|
||||
var scx = Math.min(width - 1, Math.max(0, sx + cx - halfSide));
|
||||
var poffset = (scy * width + scx) * 4;
|
||||
var wt = weightsVector[cx];
|
||||
r += pixels[poffset] * wt;
|
||||
g += pixels[poffset + 1] * wt;
|
||||
b += pixels[poffset + 2] * wt;
|
||||
a += pixels[poffset + 3] * wt;
|
||||
}
|
||||
output[offset] = r;
|
||||
output[offset + 1] = g;
|
||||
output[offset + 2] = b;
|
||||
output[offset + 3] = a + alphaFac * (255 - a);
|
||||
}
|
||||
}
|
||||
return output;
|
||||
};
|
||||
|
||||
/**
|
||||
* Fast vertical separable convolution. A point spread function (PSF) is
|
||||
* said to be separable if it can be broken into two one-dimensional
|
||||
* signals: a vertical and a horizontal projection. The convolution is
|
||||
* performed by sliding the kernel over the image, generally starting at the
|
||||
* top left corner, so as to move the kernel through all the positions where
|
||||
* the kernel fits entirely within the boundaries of the image. Adapted from
|
||||
* https://github.com/kig/canvasfilters.
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {array} weightsVector The weighting vector, e.g [-1,0,1].
|
||||
* @param {number} opaque
|
||||
* @return {array} The convoluted pixels in a linear [r,g,b,a,...] array.
|
||||
*/
|
||||
tracking.Image.verticalConvolve = function(pixels, width, height, weightsVector, opaque) {
|
||||
var side = weightsVector.length;
|
||||
var halfSide = Math.floor(side / 2);
|
||||
var output = new Float32Array(width * height * 4);
|
||||
var alphaFac = opaque ? 1 : 0;
|
||||
|
||||
for (var y = 0; y < height; y++) {
|
||||
for (var x = 0; x < width; x++) {
|
||||
var sy = y;
|
||||
var sx = x;
|
||||
var offset = (y * width + x) * 4;
|
||||
var r = 0;
|
||||
var g = 0;
|
||||
var b = 0;
|
||||
var a = 0;
|
||||
for (var cy = 0; cy < side; cy++) {
|
||||
var scy = Math.min(height - 1, Math.max(0, sy + cy - halfSide));
|
||||
var scx = sx;
|
||||
var poffset = (scy * width + scx) * 4;
|
||||
var wt = weightsVector[cy];
|
||||
r += pixels[poffset] * wt;
|
||||
g += pixels[poffset + 1] * wt;
|
||||
b += pixels[poffset + 2] * wt;
|
||||
a += pixels[poffset + 3] * wt;
|
||||
}
|
||||
output[offset] = r;
|
||||
output[offset + 1] = g;
|
||||
output[offset + 2] = b;
|
||||
output[offset + 3] = a + alphaFac * (255 - a);
|
||||
}
|
||||
}
|
||||
return output;
|
||||
};
|
||||
|
||||
/**
|
||||
* Fast separable convolution. A point spread function (PSF) is said to be
|
||||
* separable if it can be broken into two one-dimensional signals: a
|
||||
* vertical and a horizontal projection. The convolution is performed by
|
||||
* sliding the kernel over the image, generally starting at the top left
|
||||
* corner, so as to move the kernel through all the positions where the
|
||||
* kernel fits entirely within the boundaries of the image. Adapted from
|
||||
* https://github.com/kig/canvasfilters.
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @param {array} horizWeights The horizontal weighting vector, e.g [-1,0,1].
|
||||
* @param {array} vertWeights The vertical vector, e.g [-1,0,1].
|
||||
* @param {number} opaque
|
||||
* @return {array} The convoluted pixels in a linear [r,g,b,a,...] array.
|
||||
*/
|
||||
tracking.Image.separableConvolve = function(pixels, width, height, horizWeights, vertWeights, opaque) {
|
||||
var vertical = this.verticalConvolve(pixels, width, height, vertWeights, opaque);
|
||||
return this.horizontalConvolve(vertical, width, height, horizWeights, opaque);
|
||||
};
|
||||
|
||||
/**
|
||||
* Compute image edges using Sobel operator. Computes the vertical and
|
||||
* horizontal gradients of the image and combines the computed images to
|
||||
* find edges in the image. The way we implement the Sobel filter here is by
|
||||
* first grayscaling the image, then taking the horizontal and vertical
|
||||
* gradients and finally combining the gradient images to make up the final
|
||||
* image. Adapted from https://github.com/kig/canvasfilters.
|
||||
* @param {pixels} pixels The pixels in a linear [r,g,b,a,...] array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @return {array} The edge pixels in a linear [r,g,b,a,...] array.
|
||||
*/
|
||||
tracking.Image.sobel = function(pixels, width, height) {
|
||||
pixels = this.grayscale(pixels, width, height, true);
|
||||
var output = new Float32Array(width * height * 4);
|
||||
var sobelSignVector = new Float32Array([-1, 0, 1]);
|
||||
var sobelScaleVector = new Float32Array([1, 2, 1]);
|
||||
var vertical = this.separableConvolve(pixels, width, height, sobelSignVector, sobelScaleVector);
|
||||
var horizontal = this.separableConvolve(pixels, width, height, sobelScaleVector, sobelSignVector);
|
||||
|
||||
for (var i = 0; i < output.length; i += 4) {
|
||||
var v = vertical[i];
|
||||
var h = horizontal[i];
|
||||
var p = Math.sqrt(h * h + v * v);
|
||||
output[i] = p;
|
||||
output[i + 1] = p;
|
||||
output[i + 2] = p;
|
||||
output[i + 3] = 255;
|
||||
}
|
||||
|
||||
return output;
|
||||
};
|
||||
|
||||
/**
|
||||
* Equalizes the histogram of a grayscale image, normalizing the
|
||||
* brightness and increasing the contrast of the image.
|
||||
* @param {pixels} pixels The grayscale pixels in a linear array.
|
||||
* @param {number} width The image width.
|
||||
* @param {number} height The image height.
|
||||
* @return {array} The equalized grayscale pixels in a linear array.
|
||||
*/
|
||||
tracking.Image.equalizeHist = function(pixels, width, height){
|
||||
var equalized = new Uint8ClampedArray(pixels.length);
|
||||
|
||||
var histogram = new Array(256);
|
||||
for(var i=0; i < 256; i++) histogram[i] = 0;
|
||||
|
||||
for(var i=0; i < pixels.length; i++){
|
||||
equalized[i] = pixels[i];
|
||||
histogram[pixels[i]]++;
|
||||
}
|
||||
|
||||
var prev = histogram[0];
|
||||
for(var i=0; i < 256; i++){
|
||||
histogram[i] += prev;
|
||||
prev = histogram[i];
|
||||
}
|
||||
|
||||
var norm = 255 / pixels.length;
|
||||
for(var i=0; i < pixels.length; i++)
|
||||
equalized[i] = (histogram[pixels[i]] * norm + 0.5) | 0;
|
||||
|
||||
return equalized;
|
||||
}
|
||||
|
||||
}());
|
|
@ -0,0 +1,14 @@
|
|||
var Benchmark = require('./utils/benchmark.js');
|
||||
|
||||
module.exports = {
|
||||
setUp: function(done) {
|
||||
Benchmark.setUpAll(done);
|
||||
},
|
||||
|
||||
testBenchmark: function(test) {
|
||||
Benchmark.runAll(function(results) {
|
||||
test.ok(results.passed, Benchmark.createFailureMessage(results.resultDetails));
|
||||
test.done();
|
||||
});
|
||||
}
|
||||
};
|
|
@ -0,0 +1,76 @@
|
|||
'use strict';
|
||||
|
||||
var tracking = require('./utils/sandbox.js');
|
||||
|
||||
module.exports = {
|
||||
setUp: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
tearDown: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
// TODO: Update this test to generate randomWindowOffsets_ and randomImageOffsets_ instead.
|
||||
testGetDescriptors: function(test) {
|
||||
var descriptors;
|
||||
var descriptorsPerKeypoint = tracking.Brief.N / 32;
|
||||
var grayScale = [
|
||||
0, 0, 1, 0, 0, 0,
|
||||
1, 9, 0, 9, 1, 0,
|
||||
0, 1, 1, 1, 0, 0
|
||||
];
|
||||
var repeat = [-7, 7, -6, 6, -5, 5, -1, 1];
|
||||
var width = 6;
|
||||
|
||||
// Write the offsets manually, as we can't verify results that are obtained randomly.
|
||||
tracking.Brief.randomImageOffsets_[width] = [];
|
||||
for (var i = 0; i < tracking.Brief.N; i++) {
|
||||
var position = i % 4;
|
||||
tracking.Brief.randomImageOffsets_[width].push(repeat[position * 2], repeat[position * 2 + 1]);
|
||||
}
|
||||
|
||||
descriptors = tracking.Brief.getDescriptors(grayScale, width, [1, 1, 3, 1]);
|
||||
|
||||
test.equal(2 * descriptorsPerKeypoint, descriptors.length, 'There should be 8 descriptor words');
|
||||
|
||||
for (var j = 0; j < descriptorsPerKeypoint; j++) {
|
||||
test.equal(858993459, descriptors[j], 'Descriptor should be 858993459');
|
||||
}
|
||||
for (var k = descriptorsPerKeypoint; k < 2 * descriptorsPerKeypoint; k++) {
|
||||
test.equal(-286331154, descriptors[k], 'Descriptor should be -286331154');
|
||||
}
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testGetMatchings: function(test) {
|
||||
var descriptors1;
|
||||
var descriptors2;
|
||||
var grayScale1 = [
|
||||
0, 0, 1, 0, 0, 0,
|
||||
1, 9, 0, 9, 1, 0,
|
||||
0, 1, 1, 1, 0, 0
|
||||
];
|
||||
var grayScale2 = [
|
||||
0, 0, 0, 1, 0, 0,
|
||||
0, 1, 9, 0, 9, 1,
|
||||
0, 0, 1, 1, 1, 0
|
||||
];
|
||||
var keypoints1 = [1, 1, 3, 1];
|
||||
var keypoints2 = [4, 1, 2, 1];
|
||||
var matchings;
|
||||
var width = 6;
|
||||
|
||||
descriptors1 = tracking.Brief.getDescriptors(grayScale1, width, keypoints1);
|
||||
descriptors2 = tracking.Brief.getDescriptors(grayScale2, width, keypoints2);
|
||||
|
||||
matchings = tracking.Brief.match(keypoints1, descriptors1, keypoints2, descriptors2);
|
||||
|
||||
test.equal(2, matchings.length, 'There should be 2 matchings');
|
||||
test.equal(1, matchings[0].index2, 'Keypoint 0 from 1st array should match keypoint 1 from the 2nd');
|
||||
test.equal(0, matchings[1].index2, 'Keypoint 1 from 1st array should match keypoint 0 from the 2nd');
|
||||
|
||||
test.done();
|
||||
}
|
||||
};
|
|
@ -0,0 +1,194 @@
|
|||
'use strict';
|
||||
|
||||
var tracking = require('./utils/sandbox.js');
|
||||
|
||||
module.exports = {
|
||||
setUp: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
tearDown: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
testConstructorEmpty: function(test) {
|
||||
var colors;
|
||||
var tracker;
|
||||
|
||||
test.doesNotThrow(function() {
|
||||
tracker = new tracking.ColorTracker();
|
||||
});
|
||||
|
||||
colors = tracker.getColors();
|
||||
test.equal(1, colors.length, 'Colors array should have a single value');
|
||||
test.equal('magenta', colors[0], 'Default color is magenta');
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testConstructorString: function(test) {
|
||||
var colors;
|
||||
var tracker;
|
||||
|
||||
test.doesNotThrow(function() {
|
||||
tracker = new tracking.ColorTracker('yellow');
|
||||
});
|
||||
|
||||
colors = tracker.getColors();
|
||||
test.equal(1, colors.length, 'Colors array should have a single value');
|
||||
test.equal('yellow', colors[0], 'The colors array should be set to value in the constructor');
|
||||
|
||||
test.throws(function() {
|
||||
tracker = new tracking.ColorTracker('notvalid');
|
||||
});
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testConstructorArray: function(test) {
|
||||
var colors;
|
||||
var tracker;
|
||||
|
||||
test.doesNotThrow(function() {
|
||||
tracker = new tracking.ColorTracker([]);
|
||||
});
|
||||
|
||||
colors = tracker.getColors();
|
||||
test.equal(0, colors.length, 'Colors array should be empty');
|
||||
|
||||
test.doesNotThrow(function() {
|
||||
tracker = new tracking.ColorTracker(['magenta', 'cyan', 'yellow']);
|
||||
});
|
||||
|
||||
colors = tracker.getColors();
|
||||
test.equal(3, colors.length, 'Colors array have 3 values');
|
||||
test.equal('magenta', colors[0], 'The colors array should be set to values in the constructor');
|
||||
test.equal('cyan', colors[1], 'The colors array should be set to values in the constructor');
|
||||
test.equal('yellow', colors[2], 'The colors array should be set to values in the constructor');
|
||||
|
||||
test.throws(function() {
|
||||
tracker = new tracking.ColorTracker(['magenta', null, 'yellow']);
|
||||
});
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testFindColor: function(test) {
|
||||
var colors;
|
||||
var pixels;
|
||||
var tracker;
|
||||
|
||||
tracking.ColorTracker.registerColor('black', function(r, g, b) {
|
||||
return r === 0 && g === 0 && b === 0;
|
||||
});
|
||||
|
||||
tracker = new tracking.ColorTracker('black');
|
||||
colors = tracker.getColors();
|
||||
|
||||
test.equal(1, colors.length, 'Colors array have a single value');
|
||||
test.equal('black', colors[0], 'The colors array should be set to values in the constructor');
|
||||
|
||||
tracker.setMinDimension(2);
|
||||
tracker.setMinGroupSize(6);
|
||||
|
||||
pixels = [
|
||||
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
];
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
test.equal(1, event.data.length, 'There should only be one result rectangle');
|
||||
test.equal(1, event.data[0].x, 'The first rectangle should be at x = 1');
|
||||
test.equal(0, event.data[0].y, 'The first rectangle should be at y = 0');
|
||||
test.equal(2, event.data[0].width, 'The first rectangle\'s width should be 2');
|
||||
test.equal(3, event.data[0].height, 'The first rectangle\'s height should be 3');
|
||||
|
||||
test.done();
|
||||
});
|
||||
|
||||
tracker.track(pixels, 5, 4);
|
||||
},
|
||||
|
||||
testMergedRectangles: function(test) {
|
||||
var pixels;
|
||||
var tracker;
|
||||
|
||||
tracking.ColorTracker.registerColor('black', function(r, g, b) {
|
||||
return r === 0 && g === 0 && b === 0;
|
||||
});
|
||||
|
||||
tracker = new tracking.ColorTracker('black');
|
||||
tracker.setMinDimension(1);
|
||||
tracker.setMinGroupSize(6);
|
||||
|
||||
pixels = [
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0
|
||||
];
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
test.equal(2, event.data.length, 'There should be 2 result rectangles');
|
||||
test.equal(0, event.data[0].x, 'The first rectangle should be at x = 0');
|
||||
test.equal(0, event.data[0].y, 'The first rectangle should be at y = 0');
|
||||
test.equal(5, event.data[0].width, 'The first rectangle\'s width should be 5');
|
||||
test.equal(6, event.data[0].height, 'The first rectangle\'s height should be 6');
|
||||
test.equal(2, event.data[1].x, 'The second rectangle should be at x = 2');
|
||||
test.equal(8, event.data[1].y, 'The second rectangle should be at y = 8');
|
||||
test.equal(1, event.data[1].width, 'The second rectangle\'s width should be 1');
|
||||
test.equal(2, event.data[1].height, 'The second rectangle\'s height should be 2');
|
||||
|
||||
test.done();
|
||||
});
|
||||
|
||||
tracker.track(pixels, 6, 11);
|
||||
},
|
||||
|
||||
testDimensionConstraints: function(test) {
|
||||
var pixels;
|
||||
var tracker;
|
||||
|
||||
tracking.ColorTracker.registerColor('black', function(r, g, b) {
|
||||
return r === 0 && g === 0 && b === 0;
|
||||
});
|
||||
|
||||
tracker = new tracking.ColorTracker('black');
|
||||
tracker.setMinDimension(1);
|
||||
tracker.setMaxDimension(2);
|
||||
tracker.setMinGroupSize(6);
|
||||
|
||||
pixels = [
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0
|
||||
];
|
||||
|
||||
tracker.on('track', function(event) {
|
||||
test.equal(1, event.data.length, 'There should be 1 result rectangle');
|
||||
test.equal(1, event.data[0].width, 'The rectangle\'s width should be 1');
|
||||
test.equal(2, event.data[0].height, 'The rectangle\'s height should be 2');
|
||||
|
||||
test.done();
|
||||
});
|
||||
|
||||
tracker.track(pixels, 6, 11);
|
||||
}
|
||||
};
|
|
@ -0,0 +1,69 @@
|
|||
'use strict';
|
||||
|
||||
var tracking = require('./utils/sandbox.js');
|
||||
|
||||
module.exports = {
|
||||
setUp: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
tearDown: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
testCornerDetection: function(test) {
|
||||
test.ok(
|
||||
tracking.Fast.isCorner(
|
||||
150,
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255],
|
||||
10
|
||||
),
|
||||
'A corner should have been detected'
|
||||
);
|
||||
|
||||
test.equal(
|
||||
false,
|
||||
tracking.Fast.isCorner(
|
||||
150,
|
||||
[0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
10
|
||||
),
|
||||
'No corners should have been detected'
|
||||
);
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testFindCorners: function(test) {
|
||||
var corners,
|
||||
pixels = [];
|
||||
|
||||
for (var i = 0; i < 64; i++) {
|
||||
if (i === 27 || i === 28) {
|
||||
pixels.push(0);
|
||||
}
|
||||
else {
|
||||
pixels.push(255);
|
||||
}
|
||||
}
|
||||
|
||||
corners = tracking.Fast.findCorners(pixels, 8, 8);
|
||||
test.equal(
|
||||
2,
|
||||
corners.length,
|
||||
'Should have found 2 corners'
|
||||
);
|
||||
test.equal(
|
||||
3,
|
||||
corners[0],
|
||||
'Corner should at x = 3'
|
||||
);
|
||||
test.equal(
|
||||
3,
|
||||
corners[1],
|
||||
'Corner should be at y = 3'
|
||||
);
|
||||
|
||||
test.done();
|
||||
}
|
||||
};
|
|
@ -0,0 +1,77 @@
|
|||
'use strict';
|
||||
|
||||
var tracking = require('./utils/sandbox.js');
|
||||
|
||||
module.exports = {
|
||||
setUp: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
tearDown: function(done) {
|
||||
done();
|
||||
},
|
||||
|
||||
testConstructorEmpty: function(test) {
|
||||
test.doesNotThrow(
|
||||
function() {
|
||||
new tracking.ObjectTracker();
|
||||
}
|
||||
);
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testConstructorClassifier: function(test) {
|
||||
test.doesNotThrow(
|
||||
function() {
|
||||
new tracking.ObjectTracker(tracking.ViolaJones.classifiers.face);
|
||||
}
|
||||
);
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testConstructorString: function(test) {
|
||||
test.doesNotThrow(
|
||||
function() {
|
||||
new tracking.ObjectTracker('face');
|
||||
}
|
||||
);
|
||||
|
||||
test.throws(
|
||||
function() {
|
||||
new tracking.ObjectTracker('notvalid');
|
||||
}
|
||||
);
|
||||
|
||||
test.done();
|
||||
},
|
||||
|
||||
testConstructorArray: function(test) {
|
||||
test.doesNotThrow(
|
||||
function() {
|
||||
new tracking.ObjectTracker([]);
|
||||
}
|
||||
);
|
||||
|
||||
test.doesNotThrow(
|
||||
function() {
|
||||
new tracking.ObjectTracker([tracking.ViolaJones.classifiers.face]);
|
||||
}
|
||||
);
|
||||
|
||||
test.doesNotThrow(
|
||||
function() {
|
||||
new tracking.ObjectTracker(['face', 'mouth', 'eye']);
|
||||
}
|
||||
);
|
||||
|
||||
test.throws(
|
||||
function() {
|
||||
new tracking.ObjectTracker(['face', null, 'eye']);
|
||||
}
|
||||
);
|
||||
|
||||
test.done();
|
||||
}
|
||||
};
|
After Width: | Height: | Size: 40 KiB |
After Width: | Height: | Size: 40 KiB |