156 lines
6.9 KiB
Python
156 lines
6.9 KiB
Python
import requests
|
||
import json
|
||
from rest_framework.views import APIView
|
||
from apps.ichat.serializers import MessageSerializer, ConversationSerializer
|
||
from rest_framework.response import Response
|
||
from apps.ichat.models import Conversation, Message
|
||
from apps.ichat.utils import connect_db, extract_sql_code, execute_sql, get_schema_text, is_safe_sql, save_message_thread_safe
|
||
from django.http import StreamingHttpResponse, JsonResponse
|
||
from rest_framework.decorators import action
|
||
from apps.utils.viewsets import CustomGenericViewSet, CustomModelViewSet
|
||
|
||
# API_KEY = "sk-5644e2d6077b46b9a04a8a2b12d6b693"
|
||
# API_BASE = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||
# MODEL = "qwen-plus"
|
||
|
||
#本地部署的模式
|
||
API_KEY = "JJVAide0hw3eaugGmxecyYYFw45FX2LfhnYJtC+W2rw"
|
||
API_BASE = "http://106.0.4.200:9000/v1"
|
||
MODEL = "qwen14b"
|
||
|
||
# google gemini
|
||
# API_KEY = "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"
|
||
# API_BASE = "https://openrouter.ai/api/v1"
|
||
# MODEL="google/gemini-2.0-flash-exp:free"
|
||
|
||
# deepseek v3
|
||
# API_KEY = "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"
|
||
# API_BASE = "https://openrouter.ai/api/v1"
|
||
# MODEL="deepseek/deepseek-chat-v3-0324:free"
|
||
TABLES = ["enm_mpoint", "enm_mpointstat", "enm_mplogx"] # 如果整个数据库全都给模型,准确率下降,所以只给模型部分表
|
||
|
||
|
||
class QueryLLMviewSet(CustomModelViewSet):
|
||
queryset = Message.objects.all()
|
||
serializer_class = MessageSerializer
|
||
ordering = ['create_time']
|
||
perms_map = {'get':'*', 'post':'*', 'put':'*'}
|
||
|
||
@action(methods=['post'], detail=False, perms_map={'post':'*'} ,serializer_class=MessageSerializer)
|
||
def completion(self, request):
|
||
serializer = self.get_serializer(data=request.data)
|
||
serializer.is_valid(raise_exception=True)
|
||
serializer.save()
|
||
prompt = serializer.validated_data['content']
|
||
conversation = serializer.validated_data['conversation']
|
||
if not prompt or not conversation:
|
||
return JsonResponse({"error": "缺少 prompt 或 conversation"}, status=400)
|
||
save_message_thread_safe(content=prompt, conversation=conversation, role="user")
|
||
url = f"{API_BASE}/chat/completions"
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {API_KEY}"
|
||
}
|
||
|
||
user_prompt = f"""
|
||
请判断以下问题是否与数据库查询或操作相关。如果是,回答"database";如果不是,回答"general"。
|
||
|
||
问题: {prompt}
|
||
|
||
只需回答"database"或"general",不要有其他内容。
|
||
"""
|
||
_payload = {
|
||
"model": MODEL,
|
||
"messages": [{"role": "user", "content": user_prompt}],
|
||
"temperature": 0,
|
||
"max_tokens": 10
|
||
}
|
||
try:
|
||
class_response = requests.post(url, headers=headers, json=_payload)
|
||
class_response.raise_for_status()
|
||
class_result = class_response.json()
|
||
question_type = class_result.get('choices', [{}])[0].get('message', {}).get('content', '').strip().lower()
|
||
if question_type == "database":
|
||
conn = connect_db()
|
||
schema_text = get_schema_text(conn, TABLES)
|
||
user_prompt = f"""你是一个专业的数据库工程师,根据以下数据库结构:
|
||
{schema_text}
|
||
请根据我的需求生成一条标准的PostgreSQL SQL语句,直接返回SQL,不要额外解释。
|
||
需求是:{prompt}
|
||
"""
|
||
else:
|
||
user_prompt = f"""
|
||
回答以下问题,不需要涉及数据库查询:
|
||
|
||
问题: {prompt}
|
||
|
||
请直接回答问题,不要提及数据库或SQL。
|
||
"""
|
||
# TODO 是否应该拿到conservastion的id,然后根据id去数据库查询所以的messages, 然后赋值给messages
|
||
history = Message.objects.filter(conversation=conversation).order_by('create_time')
|
||
chat_history = [{"role": msg.role, "content": msg.content} for msg in history]
|
||
chat_history.append({"role": "user", "content": prompt})
|
||
print("chat_history", chat_history)
|
||
payload = {
|
||
"model": MODEL,
|
||
"messages": chat_history,
|
||
"temperature": 0,
|
||
"stream": True
|
||
}
|
||
response = requests.post(url, headers=headers, json=payload)
|
||
response.raise_for_status()
|
||
except requests.exceptions.RequestException as e:
|
||
return JsonResponse({"error":f"LLM API调用失败: {e}"}, status=500)
|
||
def stream_generator():
|
||
accumulated_content = ""
|
||
for line in response.iter_lines():
|
||
if line:
|
||
decoded_line = line.decode('utf-8')
|
||
if decoded_line.startswith('data:'):
|
||
if decoded_line.strip() == "data: [DONE]":
|
||
break # OpenAI-style标志结束
|
||
try:
|
||
data = json.loads(decoded_line[6:])
|
||
content = data.get('choices', [{}])[0].get('delta', {}).get('content', '')
|
||
print("content", content)
|
||
if content:
|
||
accumulated_content += content
|
||
yield f"data: {content}\n\n"
|
||
|
||
except Exception as e:
|
||
yield f"data: [解析失败]: {str(e)}\n\n"
|
||
print("accumulated_content", accumulated_content)
|
||
print("question_type", question_type)
|
||
print("conversation", conversation)
|
||
save_message_thread_safe(content=accumulated_content, conversation=conversation, role="system")
|
||
|
||
if question_type == "database":
|
||
sql = extract_sql_code(accumulated_content)
|
||
if sql:
|
||
try:
|
||
conn = connect_db()
|
||
if is_safe_sql(sql):
|
||
result = execute_sql(conn, sql)
|
||
save_message_thread_safe(content=f"SQL结果: {result}", conversation=conversation, role="system")
|
||
yield f"data: SQL执行结果: {result}\n\n"
|
||
else:
|
||
yield f"data: 拒绝执行非查询类 SQL:{sql}\n\n"
|
||
except Exception as e:
|
||
yield f"data: SQL执行失败: {str(e)}\n\n"
|
||
finally:
|
||
if conn:
|
||
conn.close()
|
||
else:
|
||
yield "data: \\n[文本结束]\n\n"
|
||
return StreamingHttpResponse(stream_generator(), content_type='text/event-stream')
|
||
|
||
|
||
# 先新建对话 生成对话session_id
|
||
class ConversationViewSet(CustomModelViewSet):
|
||
queryset = Conversation.objects.all()
|
||
serializer_class = ConversationSerializer
|
||
ordering = ['create_time']
|
||
perms_map = {'get':'*', 'post':'*', 'put':'*'}
|
||
|
||
|