import requests from pydantic import Field from langchain_core.language_models import LLM from langchain_core.outputs import LLMResult, Generation from langchain_experimental.sql import SQLDatabaseChain from langchain_community.utilities import SQLDatabase from server.conf import DATABASES from serializers import CustomLLMrequestSerializer from rest_framework.views import APIView from urllib.parse import quote_plus # fastapi from fastapi import FastAPI from pydantic import BaseModel db_conf = DATABASES['default'] # 密码需要 URL 编码(因为有特殊字符如 @) password_encodeed = quote_plus(db_conf['password']) db = SQLDatabase.from_uri(f"postgresql+psycopg2://{db_conf['user']}:{password_encodeed}@{db_conf['host']}/{db_conf['name']}", include_tables=["enm_mpoint", "enm_mpointstat"]) # model_url = "http://14.22.88.72:11025/v1/chat/completions" model_url = "http://139.159.180.64:11434/v1/chat/completions" class CustomLLM(LLM): model_url: str def _call(self, prompt: str, stop: list = None) -> str: data = { "model": "glm4", "messages": [ { "role": "system", "content": "你是一个 SQL 助手,严格遵循以下规则:\n" "1. 只返回 PostgreSQL 语法 SQL 语句。\n" "2. 严格禁止添加任何解释、注释、Markdown 代码块标记(包括 ```sql 和 ```)。\n" "3. 输出必须是纯 SQL,且可直接执行,无需任何额外处理。" "4. 在 SQL 中如有多个表,请始终使用表名前缀引用字段,避免字段歧义。" }, {"role": "user", "content": prompt} ], "stream": False } response = requests.post(self.model_url, json=data, timeout=600) response.raise_for_status() content = response.json()["choices"][0]["message"]["content"] clean_sql = self.strip_sql_markdown(content) return clean_sql def _generate(self, prompts: list, stop: list = None) -> LLMResult: generations = [] for prompt in prompts: text = self._call(prompt, stop) generations.append([Generation(text=text)]) return LLMResult(generations=generations) def strip_sql_markdown(self, content: str) -> str: import re # 去掉包裹在 ```sql 或 ``` 中的内容 match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE) if match: return match.group(1).strip() match = re.search(r"```\s*(.*?)```", content, re.DOTALL) if match: return match.group(1).strip() return content.strip() @property def _llm_type(self) -> str: return "custom_llm" class QueryLLMview(APIView): def post(self, request): serializer = CustomLLMrequestSerializer(data=request.data) serializer.is_valid(raise_exception=True) prompt = serializer.validated_data['prompt'] llm = CustomLLM(model_url=model_url) chain = SQLDatabaseChain(llm=llm, database=db, verbose=True) result = chain.invoke(prompt) return result