feat: ichat /增加ichat模块,优化对话流处理

This commit is contained in:
zty 2025-05-12 09:54:13 +08:00
parent a4ba33550e
commit f3ab4476a4
9 changed files with 253 additions and 152 deletions

View File

@ -12,6 +12,6 @@ class Message(BaseModel):
"""
TN: 消息
"""
conversation = models.ForeignKey(Conversation, on_delete=models.CASCADE, verbose_name='对话')
conversation = models.ForeignKey(Conversation, on_delete=models.CASCADE, related_name='messages', verbose_name='对话')
content = models.TextField(verbose_name='消息内容')
role = models.CharField("角色", max_length=10, default='user', help_text="system/user")

22
apps/ichat/script.py Normal file
View File

@ -0,0 +1,22 @@
import json
from .models import Message
from django.http import StreamingHttpResponse
def stream_generator(stream_response: bytes, conversation_id: str):
full_content = ''
for chunk in stream_response.iter_content(chunk_size=1024):
if chunk:
full_content += chunk.decode('utf-8')
try:
data = json.loads(full_content)
content = data.get("choices", [{}])[0].get("delta", {}).get("content", "")
Message.objects.create(
conversation_id=conversation_id,
content=content
)
yield f" data:{content}\n\n"
full_content = ''
except json.JSONDecodeError:
continue
return StreamingHttpResponse(stream_generator(stream_response, conversation_id), content_type='text/event-stream')

View File

@ -6,7 +6,7 @@ from apps.utils.constants import EXCLUDE_FIELDS
class MessageSerializer(serializers.ModelSerializer):
class Meta:
model = Message
fields = ['id', 'conversation', 'mode', 'content', 'role']
fields = ['id', 'conversation', 'content', 'role']
read_only_fields = EXCLUDE_FIELDS

View File

@ -1,10 +1,14 @@
from django.urls import path
from apps.ichat.views import QueryLLMview, ConversationView
from django.urls import path, include
from rest_framework.routers import DefaultRouter
from apps.ichat.views import QueryLLMviewSet, ConversationViewSet
API_BASE_URL = 'api/ichat/'
urlpatterns = [
path(API_BASE_URL + 'query/', QueryLLMview.as_view(), name='llm_query'),
path(API_BASE_URL + 'conversation/', ConversationView.as_view(), name='conversation')
router = DefaultRouter()
router.register('conversation', ConversationViewSet, basename='conversation')
router.register('message', QueryLLMviewSet, basename='message')
urlpatterns = [
path(API_BASE_URL, include(router.urls)),
]

88
apps/ichat/utils.py Normal file
View File

@ -0,0 +1,88 @@
import re
import psycopg2
import threading
from django.db import transaction
from .models import Message
# 数据库连接
def connect_db():
from server.conf import DATABASES
db_conf = DATABASES['default']
conn = psycopg2.connect(
host=db_conf['HOST'],
port=db_conf['PORT'],
user=db_conf['USER'],
password=db_conf['PASSWORD'],
database=db_conf['NAME']
)
return conn
def extract_sql_code(text):
# 优先尝试 ```sql 包裹的语句
match = re.search(r"```sql\s*(.+?)```", text, re.DOTALL | re.IGNORECASE)
if match:
return match.group(1).strip()
# fallback: 寻找首个 select 语句
match = re.search(r"(SELECT\s.+?;)", text, re.IGNORECASE | re.DOTALL)
if match:
return match.group(1).strip()
return None
def get_schema_text(conn, table_names:list):
cur = conn.cursor()
query = """
SELECT
table_name, column_name, data_type
FROM
information_schema.columns
WHERE
table_schema = 'public'
and table_name in %s;
"""
cur.execute(query, (tuple(table_names), ))
schema = {}
for table_name, column_name, data_type in cur.fetchall():
if table_name not in schema:
schema[table_name] = []
schema[table_name].append(f"{column_name} ({data_type})")
cur.close()
schema_text = ""
for table_name, columns in schema.items():
schema_text += f"{table_name} 包含列:{', '.join(columns)}\n"
return schema_text
def is_safe_sql(sql:str) -> bool:
sql = sql.strip().lower()
return sql.startswith("select") or sql.startswith("show") and not re.search(r"delete|update|insert|drop|create|alter", sql)
def execute_sql(conn, sql_query):
cur = conn.cursor()
cur.execute(sql_query)
try:
rows = cur.fetchall()
columns = [desc[0] for desc in cur.description]
result = [dict(zip(columns, row)) for row in rows]
except psycopg2.ProgrammingError:
result = cur.statusmessage
cur.close()
return result
def strip_sql_markdown(content: str) -> str:
# 去掉包裹在 ```sql 或 ``` 中的内容
match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE)
if match:
return match.group(1).strip()
else:
return None
# ORM 写入包装函数
def save_message_thread_safe(**kwargs):
def _save():
with transaction.atomic():
Message.objects.create(**kwargs)
threading.Thread(target=_save).start()

View File

@ -1,173 +1,155 @@
import requests
import psycopg2
import json
from rest_framework.views import APIView
from apps.ichat.serializers import MessageSerializer, ConversationSerializer
from rest_framework.response import Response
from ichat.models import Conversation, Message
from rest_framework.generics import get_object_or_404
#本地部署模型
from apps.ichat.models import Conversation, Message
from apps.ichat.utils import connect_db, extract_sql_code, execute_sql, get_schema_text, is_safe_sql, save_message_thread_safe
from django.http import StreamingHttpResponse, JsonResponse
from rest_framework.decorators import action
from apps.utils.viewsets import CustomGenericViewSet, CustomModelViewSet
# API_KEY = "sk-5644e2d6077b46b9a04a8a2b12d6b693"
# API_BASE = "https://dashscope.aliyuncs.com/compatible-mode/v1"
# MODEL = "qwen-plus"
#本地部署的模式
# API_KEY = "JJVAide0hw3eaugGmxecyYYFw45FX2LfhnYJtC+W2rw"
# API_BASE = "http://106.0.4.200:9000/v1"
# MODEL = "Qwen/Qwen2.5-14B-Instruct"
API_KEY = "JJVAide0hw3eaugGmxecyYYFw45FX2LfhnYJtC+W2rw"
API_BASE = "http://106.0.4.200:9000/v1"
MODEL = "qwen14b"
# google gemini
API_KEY = "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"
API_BASE = "https://openrouter.ai/api/v1"
MODEL="google/gemini-2.0-flash-exp:free"
# API_KEY = "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"
# API_BASE = "https://openrouter.ai/api/v1"
# MODEL="google/gemini-2.0-flash-exp:free"
# deepseek v3
# API_KEY = "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"
# API_BASE = "https://openrouter.ai/api/v1"
# MODEL="deepseek/deepseek-chat-v3-0324:free"
TABLES = ["enm_mpoint", "enm_mpointstat", "enm_mplogx"] # 如果整个数据库全都给模型,准确率下降,所以只给模型部分表
# 数据库连接
def connect_db():
from server.conf import DATABASES
db_conf = DATABASES['default']
conn = psycopg2.connect(
host=db_conf['HOST'],
port=db_conf['PORT'],
user=db_conf['USER'],
password=db_conf['PASSWORD'],
database=db_conf['NAME']
)
return conn
def get_schema_text(conn, table_names:list):
cur = conn.cursor()
query = """
SELECT
table_name, column_name, data_type
FROM
information_schema.columns
WHERE
table_schema = 'public'
and table_name in %s;
"""
cur.execute(query, (tuple(table_names), ))
schema = {}
for table_name, column_name, data_type in cur.fetchall():
if table_name not in schema:
schema[table_name] = []
schema[table_name].append(f"{column_name} ({data_type})")
cur.close()
schema_text = ""
for table_name, columns in schema.items():
schema_text += f"{table_name} 包含列:{', '.join(columns)}\n"
return schema_text
# 调用大模型生成sql
def call_llm_api(prompt, api_key=API_KEY, api_base=API_BASE, model=MODEL):
url = f"{api_base}/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
}
payload = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0,
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
print("\n大模型返回:\n", response.json())
return response.json()["choices"][0]["message"]["content"]
class QueryLLMviewSet(CustomModelViewSet):
queryset = Message.objects.all()
serializer_class = MessageSerializer
ordering = ['create_time']
perms_map = {'get':'*', 'post':'*', 'put':'*'}
def execute_sql(conn, sql_query):
cur = conn.cursor()
cur.execute(sql_query)
try:
rows = cur.fetchall()
columns = [desc[0] for desc in cur.description]
result = [dict(zip(columns, row)) for row in rows]
except psycopg2.ProgrammingError:
result = cur.statusmessage
cur.close()
return result
def strip_sql_markdown(content: str) -> str:
import re
# 去掉包裹在 ```sql 或 ``` 中的内容
match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE)
if match:
return match.group(1).strip()
else:
return None
class QueryLLMview(APIView):
def post(self, request):
serializer = MessageSerializer(data=request.data)
@action(methods=['post'], detail=False, perms_map={'post':'*'} ,serializer_class=MessageSerializer)
def completion(self, request):
serializer = self.get_serializer(data=request.data)
serializer.is_valid(raise_exception=True)
serializer.save()
prompt = serializer.validated_data['prompt']
conn = connect_db()
# 数据库表结构
schema_text = get_schema_text(conn, TABLES)
user_prompt = f"""你是可能是一个专业的数据库工程师,根据以下数据库结构:
prompt = serializer.validated_data['content']
conversation = serializer.validated_data['conversation']
if not prompt or not conversation:
return JsonResponse({"error": "缺少 prompt 或 conversation"}, status=400)
save_message_thread_safe(content=prompt, conversation=conversation, role="user")
url = f"{API_BASE}/chat/completions"
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
user_prompt = f"""
请判断以下问题是否与数据库查询或操作相关如果是回答"database"如果不是回答"general"
问题: {prompt}
只需回答"database""general"不要有其他内容
"""
_payload = {
"model": MODEL,
"messages": [{"role": "user", "content": user_prompt}],
"temperature": 0,
"max_tokens": 10
}
try:
class_response = requests.post(url, headers=headers, json=_payload)
class_response.raise_for_status()
class_result = class_response.json()
question_type = class_result.get('choices', [{}])[0].get('message', {}).get('content', '').strip().lower()
if question_type == "database":
conn = connect_db()
schema_text = get_schema_text(conn, TABLES)
user_prompt = f"""你是一个专业的数据库工程师,根据以下数据库结构:
{schema_text}
请根据我的需求生成一条标准的PostgreSQL SQL语句直接返回SQL不要额外解释
需求是{prompt}
"""
llm_data = call_llm_api(user_prompt)
# 判断是否生成的是sql 如果不是直接返回message
generated_sql = strip_sql_markdown(llm_data)
if generated_sql:
try:
result = execute_sql(conn, generated_sql)
return Response({"result": result})
except Exception as e:
print("\n第一次执行SQL报错了错误信息", str(e))
# 如果第一次执行SQL报错则重新生成SQL
fix_prompt = f"""刚才你生成的SQL出现了错误错误信息是{str(e)}
请根据这个错误修正你的SQL返回新的正确的SQL直接给出SQL不要解释
数据库结构如下
{schema_text}
用户需求是{prompt}
"""
fixed_sql = call_llm_api(fix_prompt)
fixed_sql = strip_sql_markdown(fixed_sql)
try:
results = execute_sql(conn, fixed_sql)
print("\n修正后的查询结果:")
print(results)
return Response({"result": results})
except Exception as e2:
print("\n修正后的SQL仍然报错错误信息", str(e2))
return Response({"error": "SQL执行失败", "detail": str(e2)}, status=400)
finally:
conn.close()
else:
return Response({"result": llm_data})
else:
user_prompt = f"""
回答以下问题不需要涉及数据库查询
问题: {prompt}
请直接回答问题不要提及数据库或SQL
"""
# TODO 是否应该拿到conservastion的id然后根据id去数据库查询所以的messages, 然后赋值给messages
history = Message.objects.filter(conversation=conversation).order_by('create_time')
chat_history = [{"role": msg.role, "content": msg.content} for msg in history]
chat_history.append({"role": "user", "content": prompt})
print("chat_history", chat_history)
payload = {
"model": MODEL,
"messages": chat_history,
"temperature": 0,
"stream": True
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
except requests.exceptions.RequestException as e:
return JsonResponse({"error":f"LLM API调用失败: {e}"}, status=500)
def stream_generator():
accumulated_content = ""
for line in response.iter_lines():
if line:
decoded_line = line.decode('utf-8')
if decoded_line.startswith('data:'):
if decoded_line.strip() == "data: [DONE]":
break # OpenAI-style标志结束
try:
data = json.loads(decoded_line[6:])
content = data.get('choices', [{}])[0].get('delta', {}).get('content', '')
print("content", content)
if content:
accumulated_content += content
yield f"data: {content}\n\n"
except Exception as e:
yield f"data: [解析失败]: {str(e)}\n\n"
print("accumulated_content", accumulated_content)
print("question_type", question_type)
print("conversation", conversation)
save_message_thread_safe(content=accumulated_content, conversation=conversation, role="system")
if question_type == "database":
sql = extract_sql_code(accumulated_content)
if sql:
try:
conn = connect_db()
if is_safe_sql(sql):
result = execute_sql(conn, sql)
save_message_thread_safe(content=f"SQL结果: {result}", conversation=conversation, role="system")
yield f"data: SQL执行结果: {result}\n\n"
else:
yield f"data: 拒绝执行非查询类 SQL{sql}\n\n"
except Exception as e:
yield f"data: SQL执行失败: {str(e)}\n\n"
finally:
if conn:
conn.close()
else:
yield "data: \\n[文本结束]\n\n"
return StreamingHttpResponse(stream_generator(), content_type='text/event-stream')
# 先新建对话 生成对话session_id
class ConversationView(APIView):
def get(self, request):
conversation = Conversation.objects.all()
serializer = ConversationSerializer(conversation, many=True)
return Response(serializer.data)
class ConversationViewSet(CustomModelViewSet):
queryset = Conversation.objects.all()
serializer_class = ConversationSerializer
ordering = ['create_time']
perms_map = {'get':'*', 'post':'*', 'put':'*'}
def post(self, request):
serializer = ConversationSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
serializer.save()
return Response(serializer.data)
def put(self, request, pk):
conversation = get_object_or_404(Conversation, pk=pk)
serializer = ConversationSerializer(conversation, data=request.data)
serializer.is_valid(raise_exception=True)
serializer.save()
return Response(serializer.data)

View File

@ -1,5 +1,6 @@
from django.core.cache import cache
from django.http import StreamingHttpResponse
from rest_framework.decorators import action
from rest_framework.exceptions import ParseError
from rest_framework.mixins import RetrieveModelMixin
@ -58,6 +59,9 @@ class CustomGenericViewSet(MyLoggingMixin, GenericViewSet):
return super().__new__(cls)
def finalize_response(self, request, response, *args, **kwargs):
# 如果是流式响应,直接返回
if isinstance(response, StreamingHttpResponse):
return response
if self.hash_k and self.cache_seconds:
cache.set(self.hash_k, response.data,
timeout=self.cache_seconds) # 将结果存入缓存,设置超时时间

View File

@ -63,6 +63,7 @@ INSTALLED_APPS = [
'apps.wf',
'apps.ecm',
'apps.hrm',
'apps.ichat',
'apps.am',
'apps.vm',
'apps.rpm',

View File

@ -44,7 +44,7 @@ urlpatterns = [
# api
path('', include('apps.auth1.urls')),
# path('', include('apps.ichat.urls')),
path('', include('apps.ichat.urls')),
path('', include('apps.system.urls')),
path('', include('apps.monitor.urls')),
path('', include('apps.wf.urls')),