feat:ichat 修改接口 去掉langchain
This commit is contained in:
parent
89c8cac7c1
commit
a5a862f7fb
|
@ -14,4 +14,4 @@ class Message(BaseModel):
|
|||
"""
|
||||
conversation = models.ForeignKey(Conversation, on_delete=models.CASCADE, verbose_name='对话')
|
||||
content = models.TextField(verbose_name='消息内容')
|
||||
role = models.CharField("角色", max_length=10, help_text="system/user")
|
||||
role = models.CharField("角色", max_length=10, default='user', help_text="system/user")
|
||||
|
|
|
@ -1,4 +1,18 @@
|
|||
from rest_framework import serializers
|
||||
from .models import Conversation, Message
|
||||
from apps.utils.constants import EXCLUDE_FIELDS
|
||||
|
||||
class CustomLLMrequestSerializer(serializers.Serializer):
|
||||
prompt = serializers.CharField()
|
||||
|
||||
class MessageSerializer(serializers.ModelSerializer):
|
||||
class Meta:
|
||||
model = Message
|
||||
fields = ['id', 'conversation', 'mode', 'content', 'role']
|
||||
read_only_fields = EXCLUDE_FIELDS
|
||||
|
||||
|
||||
class ConversationSerializer(serializers.ModelSerializer):
|
||||
messages = MessageSerializer(many=True, read_only=True)
|
||||
class Meta:
|
||||
model = Conversation
|
||||
fields = ['id', 'title', 'messages']
|
||||
read_only_fields = EXCLUDE_FIELDS
|
|
@ -1,8 +1,10 @@
|
|||
|
||||
from django.urls import path
|
||||
from apps.ichat.views import QueryLLMview
|
||||
from apps.ichat.views import QueryLLMview, ConversationView
|
||||
|
||||
API_BASE_URL = 'api/llm/ichat/'
|
||||
API_BASE_URL = 'api/ichat/'
|
||||
urlpatterns = [
|
||||
path(API_BASE_URL + 'query/', QueryLLMview.as_view(), name='llm_query'),
|
||||
path(API_BASE_URL + 'conversation/', ConversationView.as_view(), name='conversation')
|
||||
|
||||
]
|
|
@ -0,0 +1,87 @@
|
|||
import requests
|
||||
from langchain_core.language_models import LLM
|
||||
from langchain_core.outputs import LLMResult, Generation
|
||||
from langchain_experimental.sql import SQLDatabaseChain
|
||||
from langchain_community.utilities import SQLDatabase
|
||||
from server.conf import DATABASES
|
||||
from apps.ichat.serializers import CustomLLMrequestSerializer
|
||||
from rest_framework.views import APIView
|
||||
from urllib.parse import quote_plus
|
||||
from rest_framework.response import Response
|
||||
|
||||
|
||||
db_conf = DATABASES['default']
|
||||
# 密码需要 URL 编码(因为有特殊字符如 @)
|
||||
password_encodeed = quote_plus(db_conf['PASSWORD'])
|
||||
|
||||
db = SQLDatabase.from_uri(f"postgresql+psycopg2://{db_conf['USER']}:{password_encodeed}@{db_conf['HOST']}/{db_conf['NAME']}", include_tables=["enm_mpoint", "enm_mpointstat"])
|
||||
# model_url = "http://14.22.88.72:11025/v1/chat/completions"
|
||||
model_url = "http://139.159.180.64:11434/v1/chat/completions"
|
||||
|
||||
class CustomLLM(LLM):
|
||||
model_url: str
|
||||
mode: str = 'chat'
|
||||
def _call(self, prompt: str, stop: list = None) -> str:
|
||||
data = {
|
||||
"model":"glm4",
|
||||
"messages": self.build_message(prompt),
|
||||
"stream": False,
|
||||
}
|
||||
response = requests.post(self.model_url, json=data, timeout=600)
|
||||
response.raise_for_status()
|
||||
content = response.json()["choices"][0]["message"]["content"]
|
||||
print('content---', content)
|
||||
clean_sql = self.strip_sql_markdown(content) if self.mode == 'sql' else content.strip()
|
||||
return clean_sql
|
||||
|
||||
def _generate(self, prompts: list, stop: list = None) -> LLMResult:
|
||||
generations = []
|
||||
for prompt in prompts:
|
||||
text = self._call(prompt, stop)
|
||||
generations.append([Generation(text=text)])
|
||||
return LLMResult(generations=generations)
|
||||
|
||||
def strip_sql_markdown(self, content: str) -> str:
|
||||
import re
|
||||
# 去掉包裹在 ```sql 或 ``` 中的内容
|
||||
match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE)
|
||||
if match:
|
||||
return match.group(1).strip()
|
||||
else:
|
||||
return content.strip()
|
||||
|
||||
def build_message(self, prompt: str) -> list:
|
||||
if self.mode == 'sql':
|
||||
system_prompt = (
|
||||
"你是一个 SQL 助手,严格遵循以下规则:\n"
|
||||
"1. 只返回 PostgreSQL 语法 SQL 语句。\n"
|
||||
"2. 严格禁止添加任何解释、注释、Markdown 代码块标记(包括 ```sql 和 ```)。\n"
|
||||
"3. 输出必须是纯 SQL,且可直接执行,无需任何额外处理。\n"
|
||||
"4. 在 SQL 中如有多个表,请始终使用表名前缀引用字段,避免字段歧义。"
|
||||
)
|
||||
else:
|
||||
system_prompt = "你是一个聊天助手,请根据用户的问题,提供简洁明了的答案。"
|
||||
return [
|
||||
{"role": "system", "content": system_prompt},
|
||||
{"role": "user", "content": prompt},
|
||||
]
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "custom_llm"
|
||||
|
||||
|
||||
class QueryLLMview(APIView):
|
||||
def post(self, request):
|
||||
serializer = CustomLLMrequestSerializer(data=request.data)
|
||||
serializer.is_valid(raise_exception=True)
|
||||
prompt = serializer.validated_data['prompt']
|
||||
mode = serializer.validated_data.get('mode', 'chat')
|
||||
llm = CustomLLM(model_url=model_url, mode=mode)
|
||||
print('prompt---', prompt, mode)
|
||||
if mode == 'sql':
|
||||
chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
|
||||
result = chain.invoke(prompt)
|
||||
else:
|
||||
result = llm._call(prompt)
|
||||
return Response({"result": result})
|
|
@ -1,76 +1,173 @@
|
|||
import requests
|
||||
from langchain_core.language_models import LLM
|
||||
from langchain_core.outputs import LLMResult, Generation
|
||||
from langchain_experimental.sql import SQLDatabaseChain
|
||||
from langchain_community.utilities import SQLDatabase
|
||||
from server.conf import DATABASES
|
||||
from apps.ichat.serializers import CustomLLMrequestSerializer
|
||||
import psycopg2
|
||||
from rest_framework.views import APIView
|
||||
from urllib.parse import quote_plus
|
||||
from apps.ichat.serializers import MessageSerializer, ConversationSerializer
|
||||
from rest_framework.response import Response
|
||||
from ichat.models import Conversation, Message
|
||||
from rest_framework.generics import get_object_or_404
|
||||
#本地部署模型
|
||||
# API_KEY = "sk-5644e2d6077b46b9a04a8a2b12d6b693"
|
||||
# API_BASE = "https://dashscope.aliyuncs.com/compatible-mode/v1"
|
||||
# MODEL = "qwen-plus"
|
||||
|
||||
#本地部署的模式
|
||||
# API_KEY = "JJVAide0hw3eaugGmxecyYYFw45FX2LfhnYJtC+W2rw"
|
||||
# API_BASE = "http://106.0.4.200:9000/v1"
|
||||
# MODEL = "Qwen/Qwen2.5-14B-Instruct"
|
||||
|
||||
# google gemini
|
||||
API_KEY = "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"
|
||||
API_BASE = "https://openrouter.ai/api/v1"
|
||||
MODEL="google/gemini-2.0-flash-exp:free"
|
||||
|
||||
# deepseek v3
|
||||
# API_KEY = "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"
|
||||
# API_BASE = "https://openrouter.ai/api/v1"
|
||||
# MODEL="deepseek/deepseek-chat-v3-0324:free"
|
||||
|
||||
|
||||
db_conf = DATABASES['default']
|
||||
# 密码需要 URL 编码(因为有特殊字符如 @)
|
||||
password_encodeed = quote_plus(db_conf['PASSWORD'])
|
||||
TABLES = ["enm_mpoint", "enm_mpointstat", "enm_mplogx"] # 如果整个数据库全都给模型,准确率下降,所以只给模型部分表
|
||||
# 数据库连接
|
||||
def connect_db():
|
||||
from server.conf import DATABASES
|
||||
db_conf = DATABASES['default']
|
||||
conn = psycopg2.connect(
|
||||
host=db_conf['HOST'],
|
||||
port=db_conf['PORT'],
|
||||
user=db_conf['USER'],
|
||||
password=db_conf['PASSWORD'],
|
||||
database=db_conf['NAME']
|
||||
)
|
||||
return conn
|
||||
|
||||
db = SQLDatabase.from_uri(f"postgresql+psycopg2://{db_conf['USER']}:{password_encodeed}@{db_conf['HOST']}/{db_conf['NAME']}", include_tables=["enm_mpoint", "enm_mpointstat"])
|
||||
# model_url = "http://14.22.88.72:11025/v1/chat/completions"
|
||||
model_url = "http://139.159.180.64:11434/v1/chat/completions"
|
||||
def get_schema_text(conn, table_names:list):
|
||||
cur = conn.cursor()
|
||||
query = """
|
||||
SELECT
|
||||
table_name, column_name, data_type
|
||||
FROM
|
||||
information_schema.columns
|
||||
WHERE
|
||||
table_schema = 'public'
|
||||
and table_name in %s;
|
||||
"""
|
||||
cur.execute(query, (tuple(table_names), ))
|
||||
|
||||
class CustomLLM(LLM):
|
||||
model_url: str
|
||||
def _call(self, prompt: str, stop: list = None) -> str:
|
||||
data = {
|
||||
"model": "glm4",
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": "你是一个 SQL 助手,严格遵循以下规则:\n"
|
||||
"1. 只返回 PostgreSQL 语法 SQL 语句。\n"
|
||||
"2. 严格禁止添加任何解释、注释、Markdown 代码块标记(包括 ```sql 和 ```)。\n"
|
||||
"3. 输出必须是纯 SQL,且可直接执行,无需任何额外处理。"
|
||||
"4. 在 SQL 中如有多个表,请始终使用表名前缀引用字段,避免字段歧义。"
|
||||
},
|
||||
{"role": "user", "content": prompt}
|
||||
],
|
||||
"stream": False
|
||||
}
|
||||
response = requests.post(self.model_url, json=data, timeout=600)
|
||||
response.raise_for_status()
|
||||
content = response.json()["choices"][0]["message"]["content"]
|
||||
clean_sql = self.strip_sql_markdown(content)
|
||||
return clean_sql
|
||||
schema = {}
|
||||
for table_name, column_name, data_type in cur.fetchall():
|
||||
if table_name not in schema:
|
||||
schema[table_name] = []
|
||||
schema[table_name].append(f"{column_name} ({data_type})")
|
||||
cur.close()
|
||||
schema_text = ""
|
||||
for table_name, columns in schema.items():
|
||||
schema_text += f"表{table_name} 包含列:{', '.join(columns)}\n"
|
||||
return schema_text
|
||||
|
||||
def _generate(self, prompts: list, stop: list = None) -> LLMResult:
|
||||
generations = []
|
||||
for prompt in prompts:
|
||||
text = self._call(prompt, stop)
|
||||
generations.append([Generation(text=text)])
|
||||
return LLMResult(generations=generations)
|
||||
|
||||
def strip_sql_markdown(self, content: str) -> str:
|
||||
# 调用大模型生成sql
|
||||
def call_llm_api(prompt, api_key=API_KEY, api_base=API_BASE, model=MODEL):
|
||||
url = f"{api_base}/chat/completions"
|
||||
headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
payload = {
|
||||
"model": model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"temperature": 0,
|
||||
}
|
||||
response = requests.post(url, headers=headers, json=payload)
|
||||
response.raise_for_status()
|
||||
print("\n大模型返回:\n", response.json())
|
||||
return response.json()["choices"][0]["message"]["content"]
|
||||
|
||||
|
||||
def execute_sql(conn, sql_query):
|
||||
cur = conn.cursor()
|
||||
cur.execute(sql_query)
|
||||
try:
|
||||
rows = cur.fetchall()
|
||||
columns = [desc[0] for desc in cur.description]
|
||||
result = [dict(zip(columns, row)) for row in rows]
|
||||
except psycopg2.ProgrammingError:
|
||||
result = cur.statusmessage
|
||||
cur.close()
|
||||
return result
|
||||
|
||||
|
||||
def strip_sql_markdown(content: str) -> str:
|
||||
import re
|
||||
# 去掉包裹在 ```sql 或 ``` 中的内容
|
||||
match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE)
|
||||
if match:
|
||||
return match.group(1).strip()
|
||||
match = re.search(r"```\s*(.*?)```", content, re.DOTALL)
|
||||
if match:
|
||||
return match.group(1).strip()
|
||||
return content.strip()
|
||||
|
||||
@property
|
||||
def _llm_type(self) -> str:
|
||||
return "custom_llm"
|
||||
else:
|
||||
return None
|
||||
|
||||
|
||||
class QueryLLMview(APIView):
|
||||
def post(self, request):
|
||||
serializer = CustomLLMrequestSerializer(data=request.data)
|
||||
serializer = MessageSerializer(data=request.data)
|
||||
serializer.is_valid(raise_exception=True)
|
||||
serializer.save()
|
||||
prompt = serializer.validated_data['prompt']
|
||||
llm = CustomLLM(model_url=model_url)
|
||||
chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
|
||||
result = chain.invoke(prompt)
|
||||
return Response({"result": result})
|
||||
conn = connect_db()
|
||||
# 数据库表结构
|
||||
schema_text = get_schema_text(conn, TABLES)
|
||||
user_prompt = f"""你是可能是一个专业的数据库工程师,根据以下数据库结构:
|
||||
{schema_text}
|
||||
请根据我的需求生成一条标准的PostgreSQL SQL语句,直接返回SQL,不要额外解释。
|
||||
需求是:{prompt}
|
||||
"""
|
||||
llm_data = call_llm_api(user_prompt)
|
||||
# 判断是否生成的是sql 如果不是直接返回message
|
||||
generated_sql = strip_sql_markdown(llm_data)
|
||||
if generated_sql:
|
||||
try:
|
||||
result = execute_sql(conn, generated_sql)
|
||||
return Response({"result": result})
|
||||
except Exception as e:
|
||||
print("\n第一次执行SQL报错了,错误信息:", str(e))
|
||||
# 如果第一次执行SQL报错,则重新生成SQL
|
||||
fix_prompt = f"""刚才你生成的SQL出现了错误,错误信息是:{str(e)}
|
||||
请根据这个错误修正你的SQL,返回新的正确的SQL,直接给出SQL,不要解释。
|
||||
数据库结构如下:
|
||||
{schema_text}
|
||||
用户需求是:{prompt}
|
||||
"""
|
||||
fixed_sql = call_llm_api(fix_prompt)
|
||||
fixed_sql = strip_sql_markdown(fixed_sql)
|
||||
try:
|
||||
results = execute_sql(conn, fixed_sql)
|
||||
print("\n修正后的查询结果:")
|
||||
print(results)
|
||||
return Response({"result": results})
|
||||
except Exception as e2:
|
||||
print("\n修正后的SQL仍然报错,错误信息:", str(e2))
|
||||
return Response({"error": "SQL执行失败", "detail": str(e2)}, status=400)
|
||||
finally:
|
||||
conn.close()
|
||||
else:
|
||||
return Response({"result": llm_data})
|
||||
|
||||
|
||||
# 先新建对话 生成对话session_id
|
||||
class ConversationView(APIView):
|
||||
def get(self, request):
|
||||
conversation = Conversation.objects.all()
|
||||
serializer = ConversationSerializer(conversation, many=True)
|
||||
return Response(serializer.data)
|
||||
|
||||
def post(self, request):
|
||||
serializer = ConversationSerializer(data=request.data)
|
||||
serializer.is_valid(raise_exception=True)
|
||||
serializer.save()
|
||||
return Response(serializer.data)
|
||||
|
||||
def put(self, request, pk):
|
||||
conversation = get_object_or_404(Conversation, pk=pk)
|
||||
serializer = ConversationSerializer(conversation, data=request.data)
|
||||
serializer.is_valid(raise_exception=True)
|
||||
serializer.save()
|
||||
return Response(serializer.data)
|
Loading…
Reference in New Issue