feat:ichat 修改接口 去掉langchain

This commit is contained in:
zty 2025-04-30 14:33:01 +08:00
parent 89c8cac7c1
commit a5a862f7fb
5 changed files with 263 additions and 63 deletions

View File

@ -14,4 +14,4 @@ class Message(BaseModel):
""" """
conversation = models.ForeignKey(Conversation, on_delete=models.CASCADE, verbose_name='对话') conversation = models.ForeignKey(Conversation, on_delete=models.CASCADE, verbose_name='对话')
content = models.TextField(verbose_name='消息内容') content = models.TextField(verbose_name='消息内容')
role = models.CharField("角色", max_length=10, help_text="system/user") role = models.CharField("角色", max_length=10, default='user', help_text="system/user")

View File

@ -1,4 +1,18 @@
from rest_framework import serializers from rest_framework import serializers
from .models import Conversation, Message
from apps.utils.constants import EXCLUDE_FIELDS
class CustomLLMrequestSerializer(serializers.Serializer):
prompt = serializers.CharField() class MessageSerializer(serializers.ModelSerializer):
class Meta:
model = Message
fields = ['id', 'conversation', 'mode', 'content', 'role']
read_only_fields = EXCLUDE_FIELDS
class ConversationSerializer(serializers.ModelSerializer):
messages = MessageSerializer(many=True, read_only=True)
class Meta:
model = Conversation
fields = ['id', 'title', 'messages']
read_only_fields = EXCLUDE_FIELDS

View File

@ -1,8 +1,10 @@
from django.urls import path from django.urls import path
from apps.ichat.views import QueryLLMview from apps.ichat.views import QueryLLMview, ConversationView
API_BASE_URL = 'api/llm/ichat/' API_BASE_URL = 'api/ichat/'
urlpatterns = [ urlpatterns = [
path(API_BASE_URL + 'query/', QueryLLMview.as_view(), name='llm_query'), path(API_BASE_URL + 'query/', QueryLLMview.as_view(), name='llm_query'),
path(API_BASE_URL + 'conversation/', ConversationView.as_view(), name='conversation')
] ]

87
apps/ichat/view_bak.py Normal file
View File

@ -0,0 +1,87 @@
import requests
from langchain_core.language_models import LLM
from langchain_core.outputs import LLMResult, Generation
from langchain_experimental.sql import SQLDatabaseChain
from langchain_community.utilities import SQLDatabase
from server.conf import DATABASES
from apps.ichat.serializers import CustomLLMrequestSerializer
from rest_framework.views import APIView
from urllib.parse import quote_plus
from rest_framework.response import Response
db_conf = DATABASES['default']
# 密码需要 URL 编码(因为有特殊字符如 @
password_encodeed = quote_plus(db_conf['PASSWORD'])
db = SQLDatabase.from_uri(f"postgresql+psycopg2://{db_conf['USER']}:{password_encodeed}@{db_conf['HOST']}/{db_conf['NAME']}", include_tables=["enm_mpoint", "enm_mpointstat"])
# model_url = "http://14.22.88.72:11025/v1/chat/completions"
model_url = "http://139.159.180.64:11434/v1/chat/completions"
class CustomLLM(LLM):
model_url: str
mode: str = 'chat'
def _call(self, prompt: str, stop: list = None) -> str:
data = {
"model":"glm4",
"messages": self.build_message(prompt),
"stream": False,
}
response = requests.post(self.model_url, json=data, timeout=600)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
print('content---', content)
clean_sql = self.strip_sql_markdown(content) if self.mode == 'sql' else content.strip()
return clean_sql
def _generate(self, prompts: list, stop: list = None) -> LLMResult:
generations = []
for prompt in prompts:
text = self._call(prompt, stop)
generations.append([Generation(text=text)])
return LLMResult(generations=generations)
def strip_sql_markdown(self, content: str) -> str:
import re
# 去掉包裹在 ```sql 或 ``` 中的内容
match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE)
if match:
return match.group(1).strip()
else:
return content.strip()
def build_message(self, prompt: str) -> list:
if self.mode == 'sql':
system_prompt = (
"你是一个 SQL 助手,严格遵循以下规则:\n"
"1. 只返回 PostgreSQL 语法 SQL 语句。\n"
"2. 严格禁止添加任何解释、注释、Markdown 代码块标记(包括 ```sql 和 ```)。\n"
"3. 输出必须是纯 SQL且可直接执行无需任何额外处理。\n"
"4. 在 SQL 中如有多个表,请始终使用表名前缀引用字段,避免字段歧义。"
)
else:
system_prompt = "你是一个聊天助手,请根据用户的问题,提供简洁明了的答案。"
return [
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
]
@property
def _llm_type(self) -> str:
return "custom_llm"
class QueryLLMview(APIView):
def post(self, request):
serializer = CustomLLMrequestSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
prompt = serializer.validated_data['prompt']
mode = serializer.validated_data.get('mode', 'chat')
llm = CustomLLM(model_url=model_url, mode=mode)
print('prompt---', prompt, mode)
if mode == 'sql':
chain = SQLDatabaseChain.from_llm(llm, db, verbose=True)
result = chain.invoke(prompt)
else:
result = llm._call(prompt)
return Response({"result": result})

View File

@ -1,76 +1,173 @@
import requests import requests
from langchain_core.language_models import LLM import psycopg2
from langchain_core.outputs import LLMResult, Generation
from langchain_experimental.sql import SQLDatabaseChain
from langchain_community.utilities import SQLDatabase
from server.conf import DATABASES
from apps.ichat.serializers import CustomLLMrequestSerializer
from rest_framework.views import APIView from rest_framework.views import APIView
from urllib.parse import quote_plus from apps.ichat.serializers import MessageSerializer, ConversationSerializer
from rest_framework.response import Response from rest_framework.response import Response
from ichat.models import Conversation, Message
from rest_framework.generics import get_object_or_404
#本地部署模型
# API_KEY = "sk-5644e2d6077b46b9a04a8a2b12d6b693"
# API_BASE = "https://dashscope.aliyuncs.com/compatible-mode/v1"
# MODEL = "qwen-plus"
#本地部署的模式
# API_KEY = "JJVAide0hw3eaugGmxecyYYFw45FX2LfhnYJtC+W2rw"
# API_BASE = "http://106.0.4.200:9000/v1"
# MODEL = "Qwen/Qwen2.5-14B-Instruct"
# google gemini
API_KEY = "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"
API_BASE = "https://openrouter.ai/api/v1"
MODEL="google/gemini-2.0-flash-exp:free"
# deepseek v3
# API_KEY = "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"
# API_BASE = "https://openrouter.ai/api/v1"
# MODEL="deepseek/deepseek-chat-v3-0324:free"
db_conf = DATABASES['default'] TABLES = ["enm_mpoint", "enm_mpointstat", "enm_mplogx"] # 如果整个数据库全都给模型,准确率下降,所以只给模型部分表
# 密码需要 URL 编码(因为有特殊字符如 @ # 数据库连接
password_encodeed = quote_plus(db_conf['PASSWORD']) def connect_db():
from server.conf import DATABASES
db_conf = DATABASES['default']
conn = psycopg2.connect(
host=db_conf['HOST'],
port=db_conf['PORT'],
user=db_conf['USER'],
password=db_conf['PASSWORD'],
database=db_conf['NAME']
)
return conn
db = SQLDatabase.from_uri(f"postgresql+psycopg2://{db_conf['USER']}:{password_encodeed}@{db_conf['HOST']}/{db_conf['NAME']}", include_tables=["enm_mpoint", "enm_mpointstat"]) def get_schema_text(conn, table_names:list):
# model_url = "http://14.22.88.72:11025/v1/chat/completions" cur = conn.cursor()
model_url = "http://139.159.180.64:11434/v1/chat/completions" query = """
SELECT
table_name, column_name, data_type
FROM
information_schema.columns
WHERE
table_schema = 'public'
and table_name in %s;
"""
cur.execute(query, (tuple(table_names), ))
class CustomLLM(LLM): schema = {}
model_url: str for table_name, column_name, data_type in cur.fetchall():
def _call(self, prompt: str, stop: list = None) -> str: if table_name not in schema:
data = { schema[table_name] = []
"model": "glm4", schema[table_name].append(f"{column_name} ({data_type})")
"messages": [ cur.close()
{ schema_text = ""
"role": "system", for table_name, columns in schema.items():
"content": "你是一个 SQL 助手,严格遵循以下规则:\n" schema_text += f"{table_name} 包含列:{', '.join(columns)}\n"
"1. 只返回 PostgreSQL 语法 SQL 语句。\n" return schema_text
"2. 严格禁止添加任何解释、注释、Markdown 代码块标记(包括 ```sql 和 ```)。\n"
"3. 输出必须是纯 SQL且可直接执行无需任何额外处理。"
"4. 在 SQL 中如有多个表,请始终使用表名前缀引用字段,避免字段歧义。"
},
{"role": "user", "content": prompt}
],
"stream": False
}
response = requests.post(self.model_url, json=data, timeout=600)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
clean_sql = self.strip_sql_markdown(content)
return clean_sql
def _generate(self, prompts: list, stop: list = None) -> LLMResult:
generations = [] # 调用大模型生成sql
for prompt in prompts: def call_llm_api(prompt, api_key=API_KEY, api_base=API_BASE, model=MODEL):
text = self._call(prompt, stop) url = f"{api_base}/chat/completions"
generations.append([Generation(text=text)]) headers = {
return LLMResult(generations=generations) "Content-Type": "application/json",
"Authorization": f"Bearer {api_key}"
def strip_sql_markdown(self, content: str) -> str: }
payload = {
"model": model,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0,
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
print("\n大模型返回:\n", response.json())
return response.json()["choices"][0]["message"]["content"]
def execute_sql(conn, sql_query):
cur = conn.cursor()
cur.execute(sql_query)
try:
rows = cur.fetchall()
columns = [desc[0] for desc in cur.description]
result = [dict(zip(columns, row)) for row in rows]
except psycopg2.ProgrammingError:
result = cur.statusmessage
cur.close()
return result
def strip_sql_markdown(content: str) -> str:
import re import re
# 去掉包裹在 ```sql 或 ``` 中的内容 # 去掉包裹在 ```sql 或 ``` 中的内容
match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE) match = re.search(r"```sql\s*(.*?)```", content, re.DOTALL | re.IGNORECASE)
if match: if match:
return match.group(1).strip() return match.group(1).strip()
match = re.search(r"```\s*(.*?)```", content, re.DOTALL) else:
if match: return None
return match.group(1).strip()
return content.strip()
@property
def _llm_type(self) -> str:
return "custom_llm"
class QueryLLMview(APIView): class QueryLLMview(APIView):
def post(self, request): def post(self, request):
serializer = CustomLLMrequestSerializer(data=request.data) serializer = MessageSerializer(data=request.data)
serializer.is_valid(raise_exception=True) serializer.is_valid(raise_exception=True)
serializer.save()
prompt = serializer.validated_data['prompt'] prompt = serializer.validated_data['prompt']
llm = CustomLLM(model_url=model_url) conn = connect_db()
chain = SQLDatabaseChain.from_llm(llm, db, verbose=True) # 数据库表结构
result = chain.invoke(prompt) schema_text = get_schema_text(conn, TABLES)
return Response({"result": result}) user_prompt = f"""你是可能是一个专业的数据库工程师,根据以下数据库结构:
{schema_text}
请根据我的需求生成一条标准的PostgreSQL SQL语句直接返回SQL不要额外解释
需求是{prompt}
"""
llm_data = call_llm_api(user_prompt)
# 判断是否生成的是sql 如果不是直接返回message
generated_sql = strip_sql_markdown(llm_data)
if generated_sql:
try:
result = execute_sql(conn, generated_sql)
return Response({"result": result})
except Exception as e:
print("\n第一次执行SQL报错了错误信息", str(e))
# 如果第一次执行SQL报错则重新生成SQL
fix_prompt = f"""刚才你生成的SQL出现了错误错误信息是{str(e)}
请根据这个错误修正你的SQL返回新的正确的SQL直接给出SQL不要解释
数据库结构如下
{schema_text}
用户需求是{prompt}
"""
fixed_sql = call_llm_api(fix_prompt)
fixed_sql = strip_sql_markdown(fixed_sql)
try:
results = execute_sql(conn, fixed_sql)
print("\n修正后的查询结果:")
print(results)
return Response({"result": results})
except Exception as e2:
print("\n修正后的SQL仍然报错错误信息", str(e2))
return Response({"error": "SQL执行失败", "detail": str(e2)}, status=400)
finally:
conn.close()
else:
return Response({"result": llm_data})
# 先新建对话 生成对话session_id
class ConversationView(APIView):
def get(self, request):
conversation = Conversation.objects.all()
serializer = ConversationSerializer(conversation, many=True)
return Response(serializer.data)
def post(self, request):
serializer = ConversationSerializer(data=request.data)
serializer.is_valid(raise_exception=True)
serializer.save()
return Response(serializer.data)
def put(self, request, pk):
conversation = get_object_or_404(Conversation, pk=pk)
serializer = ConversationSerializer(conversation, data=request.data)
serializer.is_valid(raise_exception=True)
serializer.save()
return Response(serializer.data)