338 lines
13 KiB
Python
338 lines
13 KiB
Python
from flask import Flask, jsonify, request, send_from_directory
|
||
from flask_cors import CORS
|
||
import json
|
||
from docx import Document
|
||
import io
|
||
import fitz # PyMuPDF
|
||
import requests
|
||
import os
|
||
import re
|
||
from flask_jwt_extended import JWTManager, create_access_token, jwt_required, get_jwt_identity
|
||
from datetime import timedelta
|
||
|
||
app = Flask(__name__, static_folder='dist/assets', static_url_path='/assets')
|
||
CORS(app)
|
||
VUE_DIST_DIR = os.path.join(os.path.dirname(__file__), 'dist')
|
||
app.config.update(
|
||
JWT_SECRET_KEY='carbon',
|
||
JWT_ACCESS_TOKEN_EXPIRES=timedelta(days=1),
|
||
JWT_REFRESH_TOKEN_EXPIRES=timedelta(days=30),
|
||
JWT_ALGORITHM='HS256', # 签名算法
|
||
)
|
||
jwt = JWTManager(app)
|
||
|
||
LLM_URL = "http://106.0.4.200:9000/v1/chat/completions"
|
||
API_KEY = "JJVAide0hw3eaugGmxecyYYFw45FX2LfhnYJtC+W2rw"
|
||
MODEL = "Qwen/QwQ-32B"
|
||
HEADERS = {
|
||
"Authorization": f"Bearer {API_KEY}",
|
||
"Content-Type": "application/json"
|
||
}
|
||
OCR_URL = "http://127.0.0.1:3402/ocr_full"
|
||
|
||
def get_standard():
|
||
with open("./standard.json", "r", encoding="utf-8") as f:
|
||
standard = json.load(f)
|
||
return standard
|
||
|
||
@app.route("/api/system_info/", methods=["GET"])
|
||
def get_system_info():
|
||
return jsonify({"base_name": "转型金融核算系统"}), 200
|
||
|
||
|
||
@app.route("/api/standard/", methods=["GET"])
|
||
@jwt_required()
|
||
def get_s():
|
||
return get_standard()
|
||
|
||
@app.route('/')
|
||
def index():
|
||
return send_from_directory(VUE_DIST_DIR, 'index.html')
|
||
|
||
def get_users():
|
||
with open("./users.json", "r", encoding="utf-8") as f:
|
||
users = json.load(f)
|
||
return users
|
||
|
||
@app.route('/api/login/', methods=["POST"])
|
||
def login():
|
||
username = request.json.get("username", "unknown")
|
||
password = request.json.get("password", "unknown")
|
||
users = get_users()
|
||
if username in users and users[username]["password"] == password:
|
||
access = create_access_token(identity=username)
|
||
return jsonify({"access": access, "userInfo": {"username": username, "name": users[username]["name"]}}), 200
|
||
return jsonify({"err_msg": "用户名或密码错误"}), 400
|
||
|
||
@app.route("/api/cal/", methods=["POST"])
|
||
@jwt_required()
|
||
def cal():
|
||
data = get_standard()
|
||
file1 = request.files.get("file1", None)
|
||
file2 = request.files.get("file2", None)
|
||
file3 = request.files.get("file3", None)
|
||
file4 = request.files.get("file4", None)
|
||
file5 = request.files.get("file5", None)
|
||
file6 = request.files.get("file6", None)
|
||
if file1 or file2 or file3 or file4 or file5 or file6:
|
||
pass
|
||
else:
|
||
return jsonify({"err_msg": "请至少上传一个文件"}), 400
|
||
total_score = 0
|
||
if file1:
|
||
for item in data:
|
||
if item["thirdLevel"] in [
|
||
"碳中和路线图",
|
||
"短期/中期/长期减碳目标",
|
||
"设立碳管理相关部门",
|
||
"气候相关风险评估机制",
|
||
"内部碳定价机制",
|
||
"碳管理数字化平台建设",
|
||
"碳交易与履约能力",
|
||
"CCER等减排项目开发管理",
|
||
"数字化碳管理平台",
|
||
]:
|
||
item["result"] = item["scoringCriteria"][0]["选项"]
|
||
item["score"] = item["fullScore"]
|
||
total_score += item["score"]
|
||
if file2:
|
||
for item in data:
|
||
if item["thirdLevel"] in [
|
||
"能源与碳排放管理体系",
|
||
"碳排放数据监测、报告与核查",
|
||
"参与权威信息平台披露",
|
||
"碳中和目标与进展经第三方认证",
|
||
"碳排放实时监测覆盖率达标",
|
||
"数据自动化采集比例达标",
|
||
"数据质量与校验机制",
|
||
]:
|
||
item["result"] = item["scoringCriteria"][0]["选项"]
|
||
item["score"] = item["fullScore"]
|
||
total_score += item["score"]
|
||
if file3:
|
||
for item in data:
|
||
if item["thirdLevel"] in [
|
||
"ESG报告",
|
||
"工业固废/生物质资源利用率数据",
|
||
"硫化物减排措施",
|
||
"氮氧化物减排措施",
|
||
"其他污染物减排措施",
|
||
"项目选址生态避让与保护",
|
||
"矿山生态修复与复垦方案",
|
||
"厂区绿化与生态碳汇措施",
|
||
"低碳产品认证与标识",
|
||
"产品耐久性与回收性设计",
|
||
"无环保处罚与信访记录",
|
||
"环境应急管理体系",
|
||
"员工健康安全管理体系与制度",
|
||
"符合标准的物理环境与防护措施",
|
||
"员工心理健康支持计划",
|
||
"社区沟通与透明度机制",
|
||
"社区经济与发展贡献措施",
|
||
"社区负面影响缓解措施",
|
||
"供应商行为准则",
|
||
"供应商筛查与评估机制",
|
||
"供应商审核与改进机制",
|
||
"完善的治理结构",
|
||
"商业道德与反腐败制度",
|
||
]:
|
||
item["result"] = item["scoringCriteria"][0]["选项"]
|
||
item["score"] = item["fullScore"]
|
||
total_score += item["score"]
|
||
if file4:
|
||
for item in data:
|
||
if item["thirdLevel"] in [
|
||
"资金分配明细",
|
||
"资本金比例与到位证明",
|
||
"融资渠道多样性",
|
||
"成本效益分析",
|
||
"碳减排收益量化",
|
||
"社会效益评估",
|
||
"风险管控方案",
|
||
"关键风险应对策略与预案",
|
||
"金融机构或第三方风险分担机制",
|
||
"绿色金融资质认证与资金用途",
|
||
"融资条款与ESG绩效挂钩",
|
||
"国际合作资金申请与利用",
|
||
"应急响应与能力建设机制",
|
||
]:
|
||
item["result"] = item["scoringCriteria"][0]["选项"]
|
||
item["score"] = item["fullScore"]
|
||
total_score += item["score"]
|
||
if file5:
|
||
for item in data:
|
||
if item["thirdLevel"] in [
|
||
"AI预测减碳潜力应用",
|
||
"智能优化控制算法应用",
|
||
"ERP/EMS/MES系统集成度达标",
|
||
"IoT设备覆盖率达标",
|
||
"跨系统数据协同能力",
|
||
"碳数据安全管理措施",
|
||
"系统抗攻击能力达标",
|
||
"数据合规性与审计追踪机制",
|
||
]:
|
||
item["result"] = item["scoringCriteria"][0]["选项"]
|
||
item["score"] = item["fullScore"]
|
||
total_score += item["score"]
|
||
|
||
e_filename = None
|
||
e_content, e_err_msg = None, None
|
||
if file6:
|
||
# 获取文件名和类型
|
||
filename = file6.filename
|
||
e_filename = filename
|
||
file_type = filename.rsplit('.', 1)[1].lower() if '.' in filename else None
|
||
|
||
content, err_msg = parse_file(file6, file_type)
|
||
e_content = content
|
||
e_err_msg = err_msg
|
||
if content:
|
||
res = ask(f'以下内容为用户报告: {content}', "tec")
|
||
if res == "是":
|
||
for item in data:
|
||
if item["firstLevel"] == "二、技术路径(35 分)":
|
||
item["result"] = item["scoringCriteria"][0]["选项"]
|
||
item["score"] = item["fullScore"]
|
||
total_score += item["score"]
|
||
else:
|
||
return jsonify({"err_msg": err_msg}), 400
|
||
|
||
if file1:
|
||
filename = file1.filename
|
||
file_type = filename.rsplit('.', 1)[1].lower() if '.' in filename else None
|
||
if filename == e_filename:
|
||
content, err_msg = e_content, e_err_msg
|
||
else:
|
||
content, err_msg = parse_file(file1, file_type)
|
||
if content:
|
||
if bool(re.search(r'碳?减排目标', content)):
|
||
data[3]["result"] = "有"
|
||
data[3]["score"] = data[3]["fullScore"]
|
||
total_score += data[3]["score"]
|
||
|
||
|
||
def cal_percent(decline_patterns, content, data, index, total_score):
|
||
decline_percent = None
|
||
for pattern in decline_patterns:
|
||
match = re.search(pattern, content, re.DOTALL)
|
||
if match:
|
||
decline_percent = float(match.group(1))
|
||
break
|
||
if decline_percent:
|
||
if decline_percent >= 10:
|
||
data[index]["result"] = 3
|
||
data[index]["score"] = 5
|
||
elif decline_percent >= 5:
|
||
data[index]["result"] = 2
|
||
data[index]["score"] = 2.5
|
||
elif decline_percent > 0:
|
||
data[index]["result"] = 1
|
||
data[index]["score"] = 1.5
|
||
total_score += data[index].get("score", 0)
|
||
return total_score
|
||
|
||
# 碳排放总量
|
||
decline_patterns1 = [
|
||
r'碳排放总量[^,。]*?下降\s*([\d.]+)%',
|
||
r'碳排放[^,。]*?总量[^,。]*?下降\s*([\d.]+)%',
|
||
r'碳总量[^,。]*?下降\s*([\d.]+)%',
|
||
r'排放总量[^,。]*?下降\s*([\d.]+)%',
|
||
r'排放[^,。]*?下降\s*([\d.]+)%'
|
||
]
|
||
total_score = cal_percent(decline_patterns1, content, data, 0, total_score)
|
||
|
||
# 碳排放强度
|
||
decline_patterns2 = [
|
||
r'碳排放强度[^,。]*?下降\s*([\d.]+)%',
|
||
r'碳强度[^,。]*?总量[^,。]*?下降\s*([\d.]+)%',
|
||
r'排放强度[^,。]*?下降\s*([\d.]+)%'
|
||
]
|
||
total_score = cal_percent(decline_patterns2, content, data, 1, total_score)
|
||
|
||
# 产品碳足迹
|
||
decline_patterns3 = [
|
||
r'产品碳足迹[^,。]*?下降\s*([\d.]+)%',
|
||
r'碳足迹[^,。]*?下降\s*([\d.]+)%',
|
||
r'产品足迹[^,。]*?下降\s*([\d.]+)%'
|
||
]
|
||
total_score = cal_percent(decline_patterns3, content, data, 2, total_score)
|
||
else:
|
||
return jsonify({"err_msg": err_msg}), 400
|
||
return jsonify({"total_score": round(total_score, 2), "data": data})
|
||
|
||
def ask(input:str, p_name:str, stream=False):
|
||
with open (f"promot/{p_name}.md", "r", encoding="utf-8") as f:
|
||
promot_str = f.read()
|
||
his = [{"role":"system", "content": promot_str}]
|
||
his.append({"role":"user", "content": input})
|
||
payload = {
|
||
"model": MODEL,
|
||
"messages": his,
|
||
"temperature": 0,
|
||
"stream": stream,
|
||
"chat_template_kwargs": {"enable_thinking": False}
|
||
}
|
||
response = requests.post(LLM_URL, headers=HEADERS, json=payload, stream=stream, timeout=(60, 240))
|
||
print(response.json())
|
||
if not stream:
|
||
return response.json()["choices"][0]["message"]["content"]
|
||
|
||
def parse_file(file_content, file_type):
|
||
try:
|
||
if file_type == "pdf":
|
||
# 将文件内容转换为字节流
|
||
pdf_bytes = file_content.read()
|
||
pdf_stream = io.BytesIO(pdf_bytes)
|
||
doc = fitz.open(stream=pdf_stream, filetype="pdf")
|
||
text_content = ""
|
||
|
||
# 首先尝试直接提取文本
|
||
for page_num in range(len(doc)):
|
||
page = doc[page_num]
|
||
text_content += page.get_text() + "\n"
|
||
|
||
t_plain = text_content.strip()
|
||
if t_plain:
|
||
doc.close()
|
||
return t_plain, None
|
||
else:
|
||
# 直接转发字节流
|
||
# resp = requests.post(OCR_URL,
|
||
# files={"pdf": (file_content.filename,
|
||
# pdf_stream,
|
||
# "application/pdf")},
|
||
# timeout=120) # 大文件酌情加长
|
||
# resp.raise_for_status()
|
||
# return resp.json()["full_text"], None
|
||
return None, "无法直接提取文本,请使用OCR处理"
|
||
|
||
elif file_type == "docx":
|
||
# 将文件内容转换为字节流
|
||
doc_stream = io.BytesIO(file_content.read())
|
||
doc = Document(doc_stream)
|
||
|
||
# 提取所有段落的文本
|
||
text_content = ""
|
||
for paragraph in doc.paragraphs:
|
||
text_content += paragraph.text + "\n"
|
||
|
||
# 提取表格中的文本
|
||
for table in doc.tables:
|
||
for row in table.rows:
|
||
for cell in row.cells:
|
||
text_content += cell.text + " "
|
||
text_content += "\n"
|
||
return text_content, None
|
||
|
||
# 如果需要支持其他文件类型,可以在这里添加处理逻辑
|
||
elif file_type == "txt":
|
||
text_content = file_content.read().decode("utf-8")
|
||
return text_content, None
|
||
return None, "不支持的文件类型"
|
||
except Exception as e:
|
||
return None, f"文件解析错误: {str(e)}"
|
||
|
||
if __name__ == "__main__":
|
||
# get_ocr_engine()
|
||
app.run(debug=True, port=3401)
|